Localization (commutative algebra)

Last updated

In commutative algebra and algebraic geometry, localization is a formal way to introduce the "denominators" to a given ring or module. That is, it introduces a new ring/module out of an existing ring/module R, so that it consists of fractions such that the denominator s belongs to a given subset S of R. If S is the set of the non-zero elements of an integral domain, then the localization is the field of fractions: this case generalizes the construction of the field of rational numbers from the ring of integers.

Contents

The technique has become fundamental, particularly in algebraic geometry, as it provides a natural link to sheaf theory. In fact, the term localization originated in algebraic geometry: if R is a ring of functions defined on some geometric object (algebraic variety) V, and one wants to study this variety "locally" near a point p, then one considers the set S of all functions that are not zero at p and localizes R with respect to S. The resulting ring contains information about the behavior of V near p, and excludes information that is not "local", such as the zeros of functions that are outside V (c.f. the example given at local ring).

Localization of a ring

The localization of a commutative ring R by a multiplicatively closed set S is a new ring whose elements are fractions with numerators in R and denominators in S.

If the ring is an integral domain the construction generalizes and follows closely that of the field of fractions, and, in particular, that of the rational numbers as the field of fractions of the integers. For rings that have zero divisors, the construction is similar but requires more care.

Multiplicative set

Localization is commonly done with respect to a multiplicatively closed set S (also called a multiplicative set or a multiplicative system) of elements of a ring R, that is a subset of R that is closed under multiplication, and contains 1.

The requirement that S must be a multiplicative set is natural, since it implies that all denominators introduced by the localization belong to S. The localization by a set U that is not multiplicatively closed can also be defined, by taking as possible denominators all products of elements of U. However, the same localization is obtained by using the multiplicatively closed set S of all products of elements of U. As this often makes reasoning and notation simpler, it is standard practice to consider only localizations by multiplicative sets.

For example, the localization by a single element s introduces fractions of the form but also products of such fractions, such as So, the denominators will belong to the multiplicative set of the powers of s. Therefore, one generally talks of "the localization by the powers of an element" rather than of "the localization by an element".

The localization of a ring R by a multiplicative set S is generally denoted but other notations are commonly used in some special cases: if consists of the powers of a single element, is often denoted if is the complement of a prime ideal , then is denoted

In the remainder of this article, only localizations by a multiplicative set are considered.

Integral domains

When the ring R is an integral domain and S does not contain 0, the ring is a subring of the field of fractions of R. As such, the localization of a domain is a domain.

More precisely, it is the subring of the field of fractions of R, that consists of the fractions such that This is a subring since the sum and the product of two elements of are in This results from the defining property of a multiplicative set, which implies also that In this case, R is a subring of It is shown below that this is no longer true in general, typically when S contains zero divisors.

For example, the decimal fractions are the localization of the ring of integers by the multiplicative set of the powers of ten. In this case, consists of the rational numbers that can be written as where n is an integer, and k is a nonnegative integer.

General construction

In the general case, a problem arises with zero divisors. Let S be a multiplicative set in a commutative ring R. Suppose that and is a zero divisor with Then is the image in of and one has Thus some nonzero elements of R must be zero in The construction that follows is designed for taking this into account.

Given R and S as above, one considers the equivalence relation on that is defined by if there exists a such that

The localization is defined as the set of the equivalence classes for this relation. The class of (r, s) is denoted as or So, one has if and only if there is a such that The reason for the is to handle cases such as the above where is nonzero even though the fractions should be regarded as equal.

The localization is a commutative ring with addition

multiplication

additive identity and multiplicative identity

The function

defines a ring homomorphism from into which is injective if and only if S does not contain any zero divisors.

If then is the zero ring that has 0 as unique element.

If S is the set of all regular elements of R (that is the elements that are not zero divisors), is called the total ring of fractions of R.

Universal property

The (above defined) ring homomorphism satisfies a universal property that is described below. This characterizes up to an isomorphism. So all properties of localizations can be deduced from the universal property, independently from the way they have been constructed. Moreover, many important properties of localization are easily deduced from the general properties of universal properties, while their direct proof may be together technical, straightforward and boring.

The universal property satisfied by is the following:

If is a ring homomorphism that maps every element of S to a unit (invertible element) in T, there exists a unique ring homomorphism such that

Using category theory, this can be expressed by saying that localization is a functor that is left adjoint to a forgetful functor. More precisely, let and be the categories whose objects are pairs of a commutative ring and a submonoid of, respectively, the multiplicative monoid or the group of units of the ring. The morphisms of these categories are the ring homomorphisms that map the submonoid of the first object into the submonoid of the second one. Finally, let be the forgetful functor that forgets that the elements of the second element of the pair are invertible.

Then the factorization of the universal property defines a bijection

This may seem a rather tricky way of expressing the universal property, but it is useful for showing easily many properties, by using the fact that the composition of two left adjoint functors is a left adjoint functor.

Examples

Ring properties

Localization is a rich construction that has many useful properties. In this section, only the properties relative to rings and to a single localization are considered. Properties concerning ideals, modules, or several multiplicative sets are considered in other sections.

Properties to be moved in another section

In particular, R is reduced if and only if its total ring of fractions is reduced. [2]
where the first intersection is over all prime ideals and the second over the maximal ideals. [3]

Saturation of a multiplicative set

Let be a multiplicative set. The saturation of is the set

The multiplicative set S is saturated if it equals its saturation, that is, if , or equivalently, if implies that r and s are in S.

If S is not saturated, and then is a multiplicative inverse of the image of r in So, the images of the elements of are all invertible in and the universal property implies that and are canonically isomorphic, that is, there is a unique isomorphism between them that fixes the images of the elements of R.

If S and T are two multiplicative sets, then and are isomorphic if and only if they have the same saturation, or, equivalently, if s belongs to one of the multiplicative sets, then there exists such that st belongs to the other.

Saturated multiplicative sets are not widely used explicitly, since, for verifying that a set is saturated, one must know all units of the ring.

Terminology explained by the context

The term localization originates in the general trend of modern mathematics to study geometrical and topological objects locally, that is in terms of their behavior near each point. Examples of this trend are the fundamental concepts of manifolds, germs and sheafs. In algebraic geometry, an affine algebraic set can be identified with a quotient ring of a polynomial ring in such a way that the points of the algebraic set correspond to the maximal ideals of the ring (this is Hilbert's Nullstellensatz). This correspondence has been generalized for making the set of the prime ideals of a commutative ring a topological space equipped with the Zariski topology; this topological space is called the spectrum of the ring.

In this context, a localization by a multiplicative set may be viewed as the restriction of the spectrum of a ring to the subspace of the prime ideals (viewed as points) that do not intersect the multiplicative set.

Two classes of localizations are more commonly considered:

In number theory and algebraic topology, when working over the ring of integers, one refers to a property relative to an integer n as a property true atn or away from n, depending on the localization that is considered. "Away fromn" means that the property is considered after localization by the powers of n, and, if p is a prime number, "at p" means that the property is considered after localization at the prime ideal . This terminology can be explained by the fact that, if p is prime, the nonzero prime ideals of the localization of are either the singleton set {p} or its complement in the set of prime numbers.

Localization and saturation of ideals

Let S be a multiplicative set in a commutative ring R, and be the canonical ring homomorphism. Given an ideal I in R, let the set of the fractions in whose numerator is in I. This is an ideal of which is generated by j(I), and called the localization of I by S.

The saturation of I by S is it is an ideal of R, which can also defined as the set of the elements such that there exists with

Many properties of ideals are either preserved by saturation and localization, or can be characterized by simpler properties of localization and saturation. In what follows, S is a multiplicative set in a ring R, and I and J are ideals of R; the saturation of an ideal I by a multiplicative set S is denoted or, when the multiplicative set S is clear from the context,

Localization of a module

Let R be a commutative ring, S be a multiplicative set in R, and M be an R-module. The localization of the moduleM by S, denoted S−1M, is an S−1R-module that is constructed exactly as the localization of R, except that the numerators of the fractions belong to M. That is, as a set, it consists of equivalence classes, denoted , of pairs (m, s), where and and two pairs (m, s) and (n, t) are equivalent if there is an element u in S such that

Addition and scalar multiplication are defined as for usual fractions (in the following formula, and ):

Moreover, S−1M is also an R-module with scalar multiplication

It is straightforward to check that these operations are well-defined, that is, they give the same result for different choices of representatives of fractions.

The localization of a module can be equivalently defined by using tensor products:

The proof of equivalence (up to a canonical isomorphism) can be done by showing that the two definitions satisfy the same universal property.

Module properties

If M is a submodule of an R-module N, and S is a multiplicative set in R, one has This implies that, if is an injective module homomorphism, then

is also an injective homomorphism.

Since the tensor product is a right exact functor, this implies that localization by S maps exact sequences of R-modules to exact sequences of -modules. In other words, localization is an exact functor, and is a flat R-module.

This flatness and the fact that localization solves a universal property make that localization preserves many properties of modules and rings, and is compatible with solutions of other universal properties. For example, the natural map

is an isomorphism. If is a finitely presented module, the natural map

is also an isomorphism. [4]

If a module M is a finitely generated over R, one has

where denotes annihilator, that is the ideal of the elements of the ring that map to zero all elements of the module. [5] In particular,

that is, if for some [6]

Localization at primes

The definition of a prime ideal implies immediately that the complement of a prime ideal in a commutative ring R is a multiplicative set. In this case, the localization is commonly denoted The ring is a local ring, that is called the local ring of R at This means that is the unique maximal ideal of the ring

Such localizations are fundamental for commutative algebra and algebraic geometry for several reasons. One is that local rings are often easier to study than general commutative rings, in particular because of Nakayama lemma. However, the main reason is that many properties are true for a ring if and only if they are true for all its local rings. For example, a ring is regular if and only if all its local rings are regular local rings.

Properties of a ring that can be characterized on its local rings are called local properties, and are often the algebraic counterpart of geometric local properties of algebraic varieties, which are properties that can be studied by restriction to a small neighborhood of each point of the variety. (There is another concept of local property that refers to localization to Zariski open sets; see § Localization to Zariski open sets, below.)

Many local properties are a consequence of the fact that the module

is a faithfully flat module when the direct sum is taken over all prime ideals (or over all maximal ideals of R). See also Faithfully flat descent.

Examples of local properties

A property P of an R-module M is a local property if the following conditions are equivalent:

The following are local properties:

On the other hand, some properties are not local properties. For example, an infinite direct product of fields is not an integral domain nor a Noetherian ring, while all its local rings are fields, and therefore Noetherian integral domains.

Non-commutative case

Localizing non-commutative rings is more difficult. While the localization exists for every set S of prospective units, it might take a different form to the one described above. One condition which ensures that the localization is well behaved is the Ore condition.

One case for non-commutative rings where localization has a clear interest is for rings of differential operators. It has the interpretation, for example, of adjoining a formal inverse D1 for a differentiation operator D. This is done in many contexts in methods for differential equations. There is now a large mathematical theory about it, named microlocalization, connecting with numerous other branches. The micro- tag is to do with connections with Fourier theory, in particular.

See also

Related Research Articles

In mathematics, an associative algebraA over a commutative ring K is a ring A together with a ring homomorphism from K into the center of A. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a module or vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over K. A standard first example of a K-algebra is a ring of square matrices over a commutative ring K, with the usual matrix multiplication.

In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.

In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field of rational numbers. Intuitively, it consists of ratios between integral domain elements.

In mathematics, and more specifically in ring theory, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group.

In commutative algebra, the prime spectrum of a commutative ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings.

In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings, as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.

In ring theory, a branch of mathematics, the radical of an ideal of a commutative ring is another ideal defined by the property that an element is in the radical if and only if some power of is in . Taking the radical of an ideal is called radicalization. A radical ideal is an ideal that is equal to its radical. The radical of a primary ideal is a prime ideal.

In mathematics, particularly in algebra, the class of projective modules enlarges the class of free modules over a ring, keeping some of the main properties of free modules. Various equivalent characterizations of these modules appear below.

In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module Q that shares certain desirable properties with the Z-module Q of all rational numbers. Specifically, if Q is a submodule of some other module, then it is already a direct summand of that module; also, given a submodule of a module Y, any module homomorphism from this submodule to Q can be extended to a homomorphism from all of Y to Q. This concept is dual to that of projective modules. Injective modules were introduced in and are discussed in some detail in the textbook.

In algebra, flat modules include free modules, projective modules, and, over a principal ideal domain, torsion free modules. Formally, a module M over a ring R is flat if taking the tensor product over R with M preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence if and only if the original sequence is exact.

In ring theory, a branch of mathematics, a ring is called a reduced ring if it has no non-zero nilpotent elements. Equivalently, a ring is reduced if it has no non-zero elements with square zero, that is, x2 = 0 implies x = 0. A commutative algebra over a commutative ring is called a reduced algebra if its underlying ring is reduced.

In abstract algebra, a valuation ring is an integral domain D such that for every non-zero element x of its field of fractions F, at least one of x or x−1 belongs to D.

In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many primary ideals. The theorem was first proven by Emanuel Lasker for the special case of polynomial rings and convergent power series rings, and was proven in its full generality by Emmy Noether.

In abstract algebra, the total quotient ring or total ring of fractions is a construction that generalizes the notion of the field of fractions of an integral domain to commutative rings R that may have zero divisors. The construction embeds R in a larger ring, giving every non-zero-divisor of R an inverse in the larger ring. If the homomorphism from R to the new ring is to be injective, no further elements can be given an inverse.

In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A.

In ring theory, a branch of mathematics, the conductor is a measurement of how far apart a commutative ring and an extension ring are. Most often, the larger ring is a domain integrally closed in its field of fractions, and then the conductor measures the failure of the smaller ring to be integrally closed.

In commutative algebra, an integrally closed domainA is an integral domain whose integral closure in its field of fractions is A itself. Spelled out, this means that if x is an element of the field of fractions of A that is a root of a monic polynomial with coefficients in A, then x is itself an element of A. Many well-studied domains are integrally closed, as shown by the following chain of class inclusions:

This is a glossary of commutative algebra.

References

  1. Atiyah & Macdonald 1969 , Proposition 3.11. (v).
  2. Borel, AG. 3.3
  3. Matsumura, Theorem 4.7
  4. Eisenbud 1995 , Proposition 2.10
  5. Atiyah & Macdonald 1969 , Proposition 3.14.
  6. Borel, AG. 3.1