Location transparency

Last updated

In computer networks, location transparency is the use of names to identify network resources, rather than their actual location. [1] [2] For example, files are accessed by a unique file name, but the actual data is stored in physical sectors scattered around a disk in either the local computer or in a network. In a location transparency system, the actual location where the file is stored doesn't matter to the user. A distributed system will need to employ a networked scheme for naming resources.

The main benefit of location transparency is that it no longer matters where the resource is located. Depending on how the network is set, the user may be able to obtain files that reside on another computer connected to the particular network. [1] This means that the location of a resource doesn't matter to either the software developers or the end-users. This creates the illusion that the entire system is located in a single computer, which greatly simplifies software development.

An additional benefit is the flexibility it provides. Systems resources can be moved to a different computer at any time without disrupting any software systems running on them. By simply updating the location that goes with the named resource, every program using that resource will be able to find it. [2] Location transparency effectively makes the location easy to use for users, since the data can be accessed by almost everyone who can connect to the Internet, who knows the right file names for usage, and who has proper security credentials to access it. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Client–server model</span> Distributed application structure in computing

The client–server model is a distributed application structure that partitions tasks or workloads between the providers of a resource or service, called servers, and service requesters, called clients. Often clients and servers communicate over a computer network on separate hardware, but both client and server may reside in the same system. A server host runs one or more server programs, which share their resources with clients. A client usually does not share any of its resources, but it requests content or service from a server. Clients, therefore, initiate communication sessions with servers, which await incoming requests. Examples of computer applications that use the client–server model are email, network printing, and the World Wide Web.

A computer file is a computer resource for recording data in a computer storage device, primarily identified by its file name. Just as words can be written to paper, so can data be written to a computer file. Files can be shared with and transferred between computers and mobile devices via removable media, networks, or the Internet.

<span class="mw-page-title-main">Peer-to-peer</span> Type of decentralized and distributed network architecture

Peer-to-peer (P2P) computing or networking is a distributed application architecture that partitions tasks or workloads between peers. Peers are equally privileged, equipotent participants in the network. They are said to form a peer-to-peer network of nodes.

The resource fork is a fork or section of a file on Apple's classic Mac OS operating system, which was also carried over to the modern macOS for compatibility, used to store structured data along with the unstructured data stored within the data fork.

A management information system (MIS) is an information system used for decision-making, and for the coordination, control, analysis, and visualization of information in an organization. The study of the management information systems involves people, processes and technology in an organizational context.

Any change in a computing system, such as a new feature or new component, is transparent if the system after change adheres to previous external interface as much as possible while changing its internal behaviour. The purpose is to shield from change all systems on the other end of the interface. Confusingly, the term refers to overall invisibility of the component, it does not refer to visibility of component's internals. The term transparent is widely used in computing marketing in substitution of the term invisible, since the term invisible has a bad connotation while the term transparent has a good connotation. The vast majority of the times, the term transparent is used in a misleading way to refer to the actual invisibility of a computing process, which is also described by the term opaque, especially with regards to data structures. Because of this misleading and counter-intuitive definition, modern computer literature tends to prefer use of "agnostic" over "transparent".

<span class="mw-page-title-main">Internet security</span> Branch of computer security

Internet security is a branch of computer security. It encompasses the Internet, browser security, web site security, and network security as it applies to other applications or operating systems as a whole. Its objective is to establish rules and measures to use against attacks over the Internet. The Internet is an inherently insecure channel for information exchange, with high risk of intrusion or fraud, such as phishing, online viruses, trojans, ransomware and worms.

<span class="mw-page-title-main">Windows Registry</span> Database for Microsoft Windows

The Windows Registry is a hierarchical database that stores low-level settings for the Microsoft Windows operating system and for applications that opt to use the registry. The kernel, device drivers, services, Security Accounts Manager, and user interfaces can all use the registry. The registry also allows access to counters for profiling system performance.

Replication in computing involves sharing information so as to ensure consistency between redundant resources, such as software or hardware components, to improve reliability, fault-tolerance, or accessibility.

In computer science, storage virtualization is "the process of presenting a logical view of the physical storage resources to" a host computer system, "treating all storage media in the enterprise as a single pool of storage."

There are a number of security and safety features new to Windows Vista, most of which are not available in any prior Microsoft Windows operating system release.

A clustered file system is a file system which is shared by being simultaneously mounted on multiple servers. There are several approaches to clustering, most of which do not employ a clustered file system. Clustered file systems can provide features like location-independent addressing and redundancy which improve reliability or reduce the complexity of the other parts of the cluster. Parallel file systems are a type of clustered file system that spread data across multiple storage nodes, usually for redundancy or performance.

A roaming user profile is a file synchronization concept in the Windows NT family of operating systems that allows users with a computer joined to a Windows domain to log on to any computer on the same domain and access their documents and have a consistent desktop experience, such as applications remembering toolbar positions and preferences, or the desktop appearance staying the same, while keeping all related files stored locally, to not continuously depend on a fast and reliable network connection to a file server.

<span class="mw-page-title-main">User (computing)</span> Person who uses a computer or network service

A user is a person who utilizes a computer or network service.

In computing, virtualization or virtualisation is the act of creating a virtual version of something at the same abstraction level, including virtual computer hardware platforms, storage devices, and computer network resources.

<span class="mw-page-title-main">Cloud computing</span> Form of shared Internet-based computing

Cloud computing is the on-demand availability of computer system resources, especially data storage and computing power, without direct active management by the user. Large clouds often have functions distributed over multiple locations, each of which is a data center. Cloud computing relies on sharing of resources to achieve coherence and typically uses a pay-as-you-go model, which can help in reducing capital expenses but may also lead to unexpected operating expenses for users.

A distributed operating system is system software over a collection of independent software, networked, communicating, and physically separate computational nodes. They handle jobs which are serviced by multiple CPUs. Each individual node holds a specific software subset of the global aggregate operating system. Each subset is a composite of two distinct service provisioners. The first is a ubiquitous minimal kernel, or microkernel, that directly controls that node's hardware. Second is a higher-level collection of system management components that coordinate the node's individual and collaborative activities. These components abstract microkernel functions and support user applications.

<span class="mw-page-title-main">Distributed Data Management Architecture</span>

Distributed Data Management Architecture (DDM) is IBM's open, published software architecture for creating, managing and accessing data on a remote computer. DDM was initially designed to support record-oriented files; it was extended to support hierarchical directories, stream-oriented files, queues, and system command processing; it was further extended to be the base of IBM's Distributed Relational Database Architecture (DRDA); and finally, it was extended to support data description and conversion. Defined in the period from 1980 to 1993, DDM specifies necessary components, messages, and protocols, all based on the principles of object-orientation. DDM is not, in itself, a piece of software; the implementation of DDM takes the form of client and server products. As an open architecture, products can implement subsets of DDM architecture and products can extend DDM to meet additional requirements. Taken together, DDM products implement a distributed file system.

The following outline is provided as an overview of and topical guide to computer security:

Nirvana was virtual object storage software developed and maintained by General Atomics.

References

  1. 1 2 3 "What is location transparency?". wiseGEEK. Retrieved 2013-04-16.
  2. 1 2 "The benefits of location transparency in an SOA". Tech Republic. 5 March 2003. Retrieved 2013-04-16.