Loewe 3NF

Last updated
Loewe 3NF Loewe 1931 vacuum tube.JPG
Loewe 3NF

The Loewe 3NF was an early attempt to combine several functions in one electronic device. [1]

Produced by the German Loewe-Audion GmbH as early as 1926, the device consisted of three triode valves (tubes) in a single glass envelope together with two fixed capacitors and four fixed resistors required to make a complete radio receiver. The resistors and capacitors had to be sealed in their own glass tubes to prevent them from contaminating the vacuum.

The only other parts required to build a radio receiver were the tuning coil, the tuning capacitor and the loudspeaker. The device was produced not to enter the integrated circuit era several decades early, but to evade German taxes levied on a per valveholder basis. As the Loewe set had only one valveholder, it was able to substantially undercut the competition. The resultant radio receiver required a 90 volt HT plus a 4 volt LT (A and B) battery (the HT battery provided not only 82.5 volts for the HT, but also two grid bias supplies at −1.5 volts and −7.5 volts).

One major disadvantage of the 3NF was that if one filament failed, the whole device was rendered useless. Loewe countered this by offering a filament repair service.

Loewe were to also offer the 2NF (two tetrodes plus passive components) and the WG38 (two pentodes, a triode and the passive components).

Related Research Articles

Compactron

Compactrons are a type of thermionic valve, or vacuum tube, which contain multiple electrode structures packed into a single enclosure. They were designed to compete with early transistor electronics and were used in televisions, radios, and similar roles.

Triode

A triode is an electronic amplifying vacuum tube consisting of three electrodes inside an evacuated glass envelope: a heated filament or cathode, a grid, and a plate (anode). Developed from Lee De Forest's 1906 Audion, a partial vacuum tube that added a grid electrode to the thermionic diode, the triode was the first practical electronic amplifier and the ancestor of other types of vacuum tubes such as the tetrode and pentode. Its invention founded the electronics age, making possible amplified radio technology and long-distance telephony. Triodes were widely used in consumer electronics devices such as radios and televisions until the 1970s, when transistors replaced them. Today, their main remaining use is in high-power RF amplifiers in radio transmitters and industrial RF heating devices. In recent years there has been a resurgence in demand for low power triodes due to renewed interest in tube-type audio systems by audiophiles who prefer the pleasantly (warm) distorted sound of tube-based electronics.

Vacuum tube Device that controls electric current between electrodes in an evacuated container

A vacuum tube, electron tube, valve, or tube, is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied.

Rectifier Electrical device that converts AC to DC

A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction. The reverse operation is performed by the inverter.

Electronic color code Color code to indicate values of electronic components

An electronic color code is used to indicate the values or ratings of electronic components, usually for resistors, but also for capacitors, inductors, diodes and others. A separate code, the 25-pair color code, is used to identify wires in some telecommunications cables. Different codes are used for wire leads on devices such as transformers or in building wiring.

Audion Electronic detecting or amplifying vacuum tube

The Audion was an electronic detecting or amplifying vacuum tube invented by American electrical engineer Lee de Forest in 1906. It was the first triode, consisting of an evacuated glass tube containing three electrodes: a heated filament, a grid, and a plate. It is important in the history of technology because it was the first widely used electronic device which could amplify. A low power signal at the grid could control much more power in the plate circuit.

Tuned radio frequency receiver

A tuned radio frequency receiver is a type of radio receiver that is composed of one or more tuned radio frequency (RF) amplifier stages followed by a detector (demodulator) circuit to extract the audio signal and usually an audio frequency amplifier. This type of receiver was popular in the 1920s. Early examples could be tedious to operate because when tuning in a station each stage had to be individually adjusted to the station's frequency, but later models had ganged tuning, the tuning mechanisms of all stages being linked together, and operated by just one control knob. By the mid 1930s, it was replaced by the superheterodyne receiver patented by Edwin Armstrong.

Pentagrid converter

The pentagrid converter is a type of radio receiving valve with five grids used as the frequency mixer stage of a superheterodyne radio receiver.

Radio receiver Radio device for receiving radio waves and converting them to a useful signal

In radio communications, a radio receiver, also known as a receiver, a wireless, or simply a radio, is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. The antenna intercepts radio waves and converts them to tiny alternating currents which are applied to the receiver, and the receiver extracts the desired information. The receiver uses electronic filters to separate the desired radio frequency signal from all the other signals picked up by the antenna, an electronic amplifier to increase the power of the signal for further processing, and finally recovers the desired information through demodulation.

Vacuum fluorescent display Display used in consumer electronics

A vacuum fluorescent display (VFD) is a display device once commonly used on consumer electronics equipment such as video cassette recorders, car radios, and microwave ovens.

All American Five Colloquial name for mass-produced, superheterodyne radio receivers with 5 vacuum tubes

The term All American Five is a colloquial name for mass-produced, superheterodyne radio receivers that used five vacuum tubes in their design. These radio sets were designed to receive amplitude modulation (AM) broadcasts in the medium wave band, and were manufactured in the United States from the mid-1930s until the early 1960s. By eliminating a power transformer, cost of the units was kept low; the same principle was later applied to television receivers. Variations in the design for lower cost, shortwave bands, better performance or special power supplies existed, although many sets used an identical set of vacuum tubes.

Electronic component Discrete device in an electronic system

An electronic component is any basic discrete device or physical entity in an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements.

Electrical ballast

An electrical ballast is a device placed in series with a load to limit the amount of current in an electrical circuit.

Grid-leak detector

A grid leak detector is an electronic circuit that demodulates an amplitude modulated alternating current and amplifies the recovered modulating voltage. The circuit utilizes the non-linear cathode to control grid conduction characteristic and the amplification factor of a vacuum tube. Invented by Lee De Forest around 1912, it was used as the detector (demodulator) in the first vacuum tube radio receivers until the 1930s.

Battery eliminator

A battery eliminator is a device powered by an electrical source other than a battery, which then converts the source to a suitable DC voltage that may be used by a second device designed to be powered by batteries. A battery eliminator eliminates the need to replace batteries but may remove the advantage of portability. A battery eliminator is also effective in replacing obsolete battery designs.

Battery (vacuum tube)

In the early days of electronics, vacuum tube devices were powered by batteries. Each battery had a different designation depending on which vacuum tube element it was associated with.

Antique radio Vintage telecommunication audio receiver

An antique radio is a radio receiving set that is collectible because of its age and rarity.

Trimmer (electronics) Miniature adjustable component

A trimmer, or preset, is a miniature adjustable electrical component. It is meant to be set correctly when installed in some device, and never seen or adjusted by the device's user. Trimmers can be variable resistors (potentiometers), variable capacitors, or trimmable inductors. They are common in precision circuitry like A/V components, and may need to be adjusted when the equipment is serviced. Trimpots are often used to initially calibrate equipment after manufacturing. Unlike many other variable controls, trimmers are mounted directly on circuit boards, turned with a small screwdriver and rated for many fewer adjustments over their lifetime. Trimmers like trimmable inductors and trimmable capacitors are usually found in superhet radio and television receivers, in the intermediate frequency (IF), oscillator and radio frequency (RF) circuits. They are adjusted into the right position during the alignment procedure of the receiver.

Magic eye tube

A magic eye tube or tuning indicator, in technical literature called an electron-ray indicator tube, is a vacuum tube which gives a visual indication of the amplitude of an electronic signal, such as an audio output, radio-frequency signal strength, or other functions. The magic eye is a specific type of such a tube with a circular display similar to the EM34 illustrated. Its first broad application was as a tuning indicator in radio receivers, to give an indication of the relative strength of the received radio signal, to show when a radio station was properly tuned in.

References

  1. "3NF, Tube 3NF; Röhre 3NF ID1195, MULTI-SYSTEM, internal coup".