Malliavin calculus

Last updated

In probability theory and related fields, Malliavin calculus is a set of mathematical techniques and ideas that extend the mathematical field of calculus of variations from deterministic functions to stochastic processes. In particular, it allows the computation of derivatives of random variables. Malliavin calculus is also called the stochastic calculus of variations. P. Malliavin first initiated the calculus on infinite dimensional space. Then, the significant contributors such as S. Kusuoka, D. Stroock, J-M. Bismut, Shinzo Watanabe, I. Shigekawa, and so on finally completed the foundations.

Contents

Malliavin calculus is named after Paul Malliavin whose ideas led to a proof that Hörmander's condition implies the existence and smoothness of a density for the solution of a stochastic differential equation; Hörmander's original proof was based on the theory of partial differential equations. The calculus has been applied to stochastic partial differential equations as well.

The calculus allows integration by parts with random variables; this operation is used in mathematical finance to compute the sensitivities of financial derivatives. The calculus has applications in, for example, stochastic filtering.

Overview and history

Malliavin introduced Malliavin calculus to provide a stochastic proof that Hörmander's condition implies the existence of a density for the solution of a stochastic differential equation; Hörmander's original proof was based on the theory of partial differential equations. His calculus enabled Malliavin to prove regularity bounds for the solution's density. The calculus has been applied to stochastic partial differential equations.

Invariance principle

The usual invariance principle for Lebesgue integration over the whole real line is that, for any real number ε and integrable function f, the following holds

and hence

This can be used to derive the integration by parts formula since, setting f = gh, it implies

A similar idea can be applied in stochastic analysis for the differentiation along a Cameron-Martin-Girsanov direction. Indeed, let be a square-integrable predictable process and set

If is a Wiener process, the Girsanov theorem then yields the following analogue of the invariance principle:

Differentiating with respect to ε on both sides and evaluating at ε=0, one obtains the following integration by parts formula:

Here, the left-hand side is the Malliavin derivative of the random variable in the direction and the integral appearing on the right hand side should be interpreted as an Itô integral.

Gaussian probability space

The toy model of Malliavin calculus is an irreducible Gaussian probability space . This is a (complete) probability space together with a closed subspace [ disambiguation needed ] such that all are mean zero Gaussian variables and . If one chooses a basis for then one calls a numerical model. On the other hand, for any separable Hilbert space exists a canonical irreducible Gaussian probability space named the Segal model having as its Gaussian subspace. Properties of a Gaussian probability space that do not depend on the particular choice of basis are called intrinsic and such that do depend on the choice extrensic. [1] We denote the countably infinite product of real spaces as .

Let be the canonical Gaussian measure, by transferring the Cameron-Martin theorem from into a numerical model , the additive group of will define a quasi-automorphism group on . A construction can be done as follows: choose an orthonormal basis in , let denote the translation on by , denote the map into the Cameron-Martin space by , denote

and

we get a canonical representation of the additive group acting on the endomorphisms by defining

One can show that the action of is extrinsic meaning it does not depend on the choice of basis for , further for and for the infinitesimal generator of that

where is the identity operator and denotes the multiplication operator by the random variable on associated to (acting on the endomorphisms). [2]

Clark–Ocone formula

One of the most useful results from Malliavin calculus is the Clark–Ocone theorem, which allows the process in the martingale representation theorem to be identified explicitly. A simplified version of this theorem is as follows:

Consider the standard Wiener measure on the canonical space , equipped with its canonical filtration. For satisfying which is Lipschitz and such that F has a strong derivative kernel, in the sense that for in C[0,1]

then

where H is the previsible projection of F'(x, (t,1]) which may be viewed as the derivative of the function F with respect to a suitable parallel shift of the process X over the portion (t,1] of its domain.

This may be more concisely expressed by

Much of the work in the formal development of the Malliavin calculus involves extending this result to the largest possible class of functionals F by replacing the derivative kernel used above by the "Malliavin derivative" denoted in the above statement of the result. [ citation needed ]

Skorokhod integral

The Skorokhod integral operator which is conventionally denoted δ is defined as the adjoint of the Malliavin derivative in the white noise case when the Hilbert space is an space, thus for u in the domain of the operator which is a subset of , for F in the domain of the Malliavin derivative, we require

where the inner product is that on viz

The existence of this adjoint follows from the Riesz representation theorem for linear operators on Hilbert spaces.

It can be shown that if u is adapted then

where the integral is to be understood in the Itô sense. Thus this provides a method of extending the Itô integral to non adapted integrands.

Applications

The calculus allows integration by parts with random variables; this operation is used in mathematical finance to compute the sensitivities of financial derivatives. The calculus has applications for example in stochastic filtering.

Related Research Articles

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Since there is no function having this property, to model the delta "function" rigorously involves the use of limits or, as is common in mathematics, measure theory and the theory of distributions.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Noether's theorem</span> Statement relating differentiable symmetries to conserved quantities

Noether's theorem states that every continuous symmetry of the action of a physical system with conservative forces has a corresponding conservation law. This is the first of two theorems proven by mathematician Emmy Noether in 1915 and published in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries of physical space.

In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem.

In the calculus of variations, a field of mathematical analysis, the functional derivative relates a change in a functional to a change in a function on which the functional depends.

In mathematical analysis, a function of bounded variation, also known as BV function, is a real-valued function whose total variation is bounded (finite): the graph of a function having this property is well behaved in a precise sense. For a continuous function of a single variable, being of bounded variation means that the distance along the direction of the y-axis, neglecting the contribution of motion along x-axis, traveled by a point moving along the graph has a finite value. For a continuous function of several variables, the meaning of the definition is the same, except for the fact that the continuous path to be considered cannot be the whole graph of the given function, but can be every intersection of the graph itself with a hyperplane parallel to a fixed x-axis and to the y-axis.

<span class="mw-page-title-main">Path integral formulation</span> Formulation of quantum mechanics

The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.

In the theory of stochastic processes, the Karhunen–Loève theorem, also known as the Kosambi–Karhunen–Loève theorem states that a stochastic process can be represented as an infinite linear combination of orthogonal functions, analogous to a Fourier series representation of a function on a bounded interval. The transformation is also known as Hotelling transform and eigenvector transform, and is closely related to principal component analysis (PCA) technique widely used in image processing and in data analysis in many fields.

In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault cohomology groups depend on a pair of integers p and q and are realized as a subquotient of the space of complex differential forms of degree (p,q).

In mathematics, a π-system on a set is a collection of certain subsets of such that

In mathematics, Weyl's lemma, named after Hermann Weyl, states that every weak solution of Laplace's equation is a smooth solution. This contrasts with the wave equation, for example, which has weak solutions that are not smooth solutions. Weyl's lemma is a special case of elliptic or hypoelliptic regularity.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

Coherent states have been introduced in a physical context, first as quasi-classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states. However, they have generated a huge variety of generalizations, which have led to a tremendous amount of literature in mathematical physics. In this article, we sketch the main directions of research on this line. For further details, we refer to several existing surveys.

Quantum stochastic calculus is a generalization of stochastic calculus to noncommuting variables. The tools provided by quantum stochastic calculus are of great use for modeling the random evolution of systems undergoing measurement, as in quantum trajectories. Just as the Lindblad master equation provides a quantum generalization to the Fokker–Planck equation, quantum stochastic calculus allows for the derivation of quantum stochastic differential equations (QSDE) that are analogous to classical Langevin equations.

In quantum probability, the Belavkin equation, also known as Belavkin-Schrödinger equation, quantum filtering equation, stochastic master equation, is a quantum stochastic differential equation describing the dynamics of a quantum system undergoing observation in continuous time. It was derived and henceforth studied by Viacheslav Belavkin in 1988.

In mathematics, Katugampola fractional operators are integral operators that generalize the Riemann–Liouville and the Hadamard fractional operators into a unique form. The Katugampola fractional integral generalizes both the Riemann–Liouville fractional integral and the Hadamard fractional integral into a single form and It is also closely related to the Erdelyi–Kober operator that generalizes the Riemann–Liouville fractional integral. Katugampola fractional derivative has been defined using the Katugampola fractional integral and as with any other fractional differential operator, it also extends the possibility of taking real number powers or complex number powers of the integral and differential operators.

In representation theory of mathematics, the Waldspurger formula relates the special values of two L-functions of two related admissible irreducible representations. Let k be the base field, f be an automorphic form over k, π be the representation associated via the Jacquet–Langlands correspondence with f. Goro Shimura (1976) proved this formula, when and f is a cusp form; Günter Harder made the same discovery at the same time in an unpublished paper. Marie-France Vignéras (1980) proved this formula, when and f is a newform. Jean-Loup Waldspurger, for whom the formula is named, reproved and generalized the result of Vignéras in 1985 via a totally different method which was widely used thereafter by mathematicians to prove similar formulas.

In probability theory, a branch of mathematics, white noise analysis, otherwise known as Hida calculus, is a framework for infinite-dimensional and stochastic calculus, based on the Gaussian white noise probability space, to be compared with Malliavin calculus based on the Wiener process. It was initiated by Takeyuki Hida in his 1975 Carleton Mathematical Lecture Notes.

In mathematics, calculus on Euclidean space is a generalization of calculus of functions in one or several variables to calculus of functions on Euclidean space as well as a finite-dimensional real vector space. This calculus is also known as advanced calculus, especially in the United States. It is similar to multivariable calculus but is somewhat more sophisticated in that it uses linear algebra more extensively and covers some concepts from differential geometry such as differential forms and Stokes' formula in terms of differential forms. This extensive use of linear algebra also allows a natural generalization of multivariable calculus to calculus on Banach spaces or topological vector spaces.

In stochastic calculus, the Ogawa integral, also called the non-causal stochastic integral, is a stochastic integral for non-adapted processes as integrands. The corresponding calculus is called non-causal calculus in order to distinguish it from the anticipating calculus of the Skorokhod integral. The term causality refers to the adaptation to the natural filtration of the integrator.

References

  1. Malliavin, Paul (1997). Stochastic Analysis. Grundlehren der mathematischen Wissenschaften. Berlin, Heidelberg: Springer. pp. 4–15. ISBN   3-540-57024-1.
  2. Malliavin, Paul (1997). Stochastic Analysis. Grundlehren der mathematischen Wissenschaften. Berlin, Heidelberg: Springer. pp. 20–22. ISBN   3-540-57024-1.