Master stability function

Last updated

In mathematics, the master stability function is a tool used to analyze the stability of the synchronous state in a dynamical system consisting of many identical systems which are coupled together, such as the Kuramoto model.

The setting is as follows. Consider a system with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): N identical oscillators. Without the coupling, they evolve according to the same differential equation, say Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \dot{x}_i = f(x_i) } where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): x_{i} denotes the state of oscillator Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): i. A synchronous state of the system of oscillators is where all the oscillators are in the same state.

The coupling is defined by a coupling strength Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): \sigma , a matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): A_{ij} which describes how the oscillators are coupled together, and a function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): g of the state of a single oscillator. Including the coupling leads to the following equation:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \dot{x}_i = f(x_i) + \sigma \sum_{j=1}^N A_{ij} g(x_j). }

It is assumed that the row sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \sum_j A_{ij} } vanish so that the manifold of synchronous states is neutrally stable.

The master stability function is now defined as the function which maps the complex number Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): \gamma to the greatest Lyapunov exponent of the equation

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \dot{y} = (Df + \gamma Dg) y. }

The synchronous state of the system of coupled oscillators is stable if the master stability function is negative at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \sigma \lambda_k } where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): \lambda _{k} ranges over the eigenvalues of the coupling matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): A.

Related Research Articles

<span class="mw-page-title-main">Coriolis force</span> Force on objects moving within a reference frame that rotates with respect to an inertial frame

In physics, the Coriolisis force is an inertial or fictitious force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motion of the object. In one with anticlockwise rotation, the force acts to the right. Deflection of an object due to the Coriolis force is called the Coriolis effect. Though recognized previously by others, the mathematical expression for the Coriolis force appeared in an 1835 paper by French scientist Gaspard-Gustave de Coriolis, in connection with the theory of water wheels. Early in the 20th century, the term Coriolis force began to be used in connection with meteorology.

<span class="mw-page-title-main">Graph theory</span> Area of discrete mathematics

In mathematics, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices which are connected by edges. A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics.

<span class="mw-page-title-main">Keno</span> Game of chance

Keno is a lottery-like gambling game often played at modern casinos, and also offered as a game in some lotteries.

<span class="mw-page-title-main">Spacetime</span> Mathematical model combining space and time

In physics, spacetime is any mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects such as how different observers perceive where and when events occur.

<span class="mw-page-title-main">Function (mathematics)</span> Association of one output to each input

In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. The set X is called the domain of the function and the set Y is called the codomain of the function.

The IEEE Standard for Floating-Point Arithmetic is a technical standard for floating-point arithmetic established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). The standard addressed many problems found in the diverse floating-point implementations that made them difficult to use reliably and portably. Many hardware floating-point units use the IEEE 754 standard.

<span class="mw-page-title-main">Rossby number</span> Ratio of inertial force to Coriolis force

The Rossby number (Ro), named for Carl-Gustav Arvid Rossby, is a dimensionless number used in describing fluid flow. The Rossby number is the ratio of inertial force to Coriolis force, terms and in the Navier–Stokes equations respectively. It is commonly used in geophysical phenomena in the oceans and atmosphere, where it characterizes the importance of Coriolis accelerations arising from planetary rotation. It is also known as the Kibel number.

<span class="mw-page-title-main">Logarithmic distribution</span> Discrete probability distribution

In probability and statistics, the logarithmic distribution is a discrete probability distribution derived from the Maclaurin series expansion

In mathematics and social science, a collaboration graph is a graph modeling some social network where the vertices represent participants of that network and where two distinct participants are joined by an edge whenever there is a collaborative relationship between them of a particular kind. Collaboration graphs are used to measure the closeness of collaborative relationships between the participants of the network.

In computer science and operations research, randomized rounding is a widely-used approach for designing and analyzing approximation algorithms.

In mathematics and computer science, the method of conditional probabilities is a systematic method for converting non-constructive probabilistic existence proofs into efficient deterministic algorithms that explicitly construct the desired object.

Subtract-with-carry is a pseudorandom number generator: one of many algorithms designed to produce a long series of random-looking numbers based on a small amount of starting data. It is of the lagged Fibonacci type introduced by George Marsaglia and Arif Zaman in 1991. "Lagged Fibonacci" refers to the fact that each random number is a function of two of the preceding numbers at some specified, fixed offsets, or "lags".

<span class="mw-page-title-main">Björling problem</span>

In differential geometry, the Björling problem is the problem of finding a minimal surface passing through a given curve with prescribed normal. The problem was posed and solved by Swedish mathematician Emanuel Gabriel Björling, with further refinement by Hermann Schwarz.

An oversampled binary image sensor is an image sensor with non-linear response capabilities reminiscent of traditional photographic film. Each pixel in the sensor has a binary response, giving only a one-bit quantized measurement of the local light intensity. The response function of the image sensor is non-linear and similar to a logarithmic function, which makes the sensor suitable for high dynamic range imaging.

In mathematics, the quasi-commutative property is an extension or generalization of the general commutative property. This property is used in specific applications with various definitions.

In mathematics, the Teichmüller cocycle is a certain 3-cocycle associated to a simple algebra A over a field L which is a finite Galois extension of a field K and which has the property that any automorphism of L over K extends to an automorphism of A. The Teichmüller cocycle, or rather its cohomology class, is the obstruction to the algebra A coming from a simple algebra over K. It was introduced by Teichmüller (1940) and named by Eilenberg and MacLane (1948).

In algebraic topology, the Bousfield class of, say, a spectrum X is the set of all (say) spectra Y whose smash product with X is zero: . Two objects are Bousfield equivalent if their Bousfield classes are the same.

<span class="mw-page-title-main">E series of preferred numbers</span> Series of preferred values for passive electrical components

The E series is a system of preferred numbers derived for use in electronic components. It consists of the E3, E6, E12, E24, E48, E96 and E192 series, where the number after the 'E' designates the quantity of logarithmic value "steps" per decade. Although it is theoretically possible to produce components of any value, in practice the need for inventory simplification has led the industry to settle on the E series for resistors, capacitors, inductors, and zener diodes. Other types of electrical components are either specified by the Renard series or are defined in relevant product standards.

In quantum information, the gnu code refers to a particular family of quantum error correcting codes, with the special property of being invariant under permutations of the qubits. Given integers g, n, and m, the two codewords are

In stochastic calculus, the Boué–Dupuis formula is variational representation for Wiener functionals. The representation has application in finding large deviation asymptotics.

References