Matrix norm

Last updated

In the field of mathematics, norms are defined for elements within a vector space. Specifically, when the vector space comprises matrices, such norms are referred to as matrix norms. Matrix norms differ from vector norms in that they must also interact with matrix multiplication.

Contents


Preliminaries

Given a field of either real or complex numbers, let be the K-vector space of matrices with rows and columns and entries in the field . A matrix norm is a norm on .

Norms are often expressed with double vertical bars (like so: ). Thus, the matrix norm is a function that must satisfy the following properties: [1] [2]

For all scalars and matrices ,

The only feature distinguishing matrices from rearranged vectors is multiplication. Matrix norms are particularly useful if they are also sub-multiplicative: [1] [2] [3]

Every norm on Kn×n can be rescaled to be sub-multiplicative; in some books, the terminology matrix norm is reserved for sub-multiplicative norms. [4]

Matrix norms induced by vector norms

Suppose a vector norm on and a vector norm on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows:

where denotes the supremum. This norm measures how much the mapping induced by can stretch vectors. Depending on the vector norms , used, notation other than can be used for the operator norm.

Matrix norms induced by vector p-norms

If the p-norm for vectors () is used for both spaces and then the corresponding operator norm is: [2]

These induced norms are different from the "entry-wise" p-norms and the Schatten p-norms for matrices treated below, which are also usually denoted by


Geometrically speaking, one can imagine a p-norm unit ball in , then apply the linear map to the ball. It would end up becoming a distorted convex shape , and measures the longest "radius" of the distorted convex shape. In other words, we must take a p-norm unit ball in , then multiply it by at least , in order for it to be large enough to contain .

p = 1, ∞

When , we have simple formulas.

which is simply the maximum absolute column sum of the matrix.

which is simply the maximum absolute row sum of the matrix.

For example, for

we have that

Spectral norm (p = 2)

When (the Euclidean norm or -norm for vectors), the induced matrix norm is the spectral norm. (The two values do not coincide in infinite dimensions see Spectral radius for further discussion.) The spectral norm of a matrix is the largest singular value of (i.e., the square root of the largest eigenvalue of the matrix where denotes the conjugate transpose of ): [5]

where represents the largest singular value of matrix


There are further properties:

  • Proved by the Cauchy–Schwarz inequality.
  • . Proven by singular value decomposition (SVD) on .
  • , where is the Frobenius norm. Equality holds if and only if the matrix is a rank-one matrix or a zero matrix.
  • .

Matrix norms induced by vector α- and β- norms

We can generalize the above definition. Suppose we have vector norms and for spaces and respectively; the corresponding operator norm is

In particular, the defined previously is the special case of .


In the special cases of and , the induced matrix norms can be computed by

where is the i-th row of matrix . In the special cases of and , the induced matrix norms can be computed by

where is the j-th column of matrix .

Hence, and are the maximum row and column 2-norm of the matrix, respectively.

Properties

Any operator norm is consistent with the vector norms that induce it, giving

Suppose ; ; and are operator norms induced by the respective pairs of vector norms ; ; and . Then,

this follows from

and

Square matrices

Suppose is an operator norm on the space of square matrices induced by vector norms and . Then, the operator norm is a sub-multiplicative matrix norm:

Moreover, any such norm satisfies the inequality

for all positive integers r, where ρ(A) is the spectral radius of A. For symmetric or hermitian A, we have equality in ( 1 ) for the 2-norm, since in this case the 2-norm is precisely the spectral radius of A. For an arbitrary matrix, we may not have equality for any norm; a counterexample would be

which has vanishing spectral radius. In any case, for any matrix norm, we have the spectral radius formula:

Consistent and compatible norms

A matrix norm on is called consistent with a vector norm on and a vector norm on , if:

for all and all . In the special case of m = n and , is also called compatible with .

All induced norms are consistent by definition. Also, any sub-multiplicative matrix norm on induces a compatible vector norm on by defining .

"Entry-wise" matrix norms

These norms treat an matrix as a vector of size , and use one of the familiar vector norms. For example, using the p-norm for vectors, p ≥ 1, we get:

This is a different norm from the induced p-norm (see above) and the Schatten p-norm (see below), but the notation is the same.

The special case p = 2 is the Frobenius norm, and p = yields the maximum norm.

L2,1 and Lp,q norms

Let be the columns of matrix . From the original definition, the matrix presents n data points in m-dimensional space. The norm [6] is the sum of the Euclidean norms of the columns of the matrix:

The norm as an error function is more robust, since the error for each data point (a column) is not squared. It is used in robust data analysis and sparse coding.

For p, q ≥ 1, the norm can be generalized to the norm as follows:

Frobenius norm

When p = q = 2 for the norm, it is called the Frobenius norm or the Hilbert–Schmidt norm, though the latter term is used more frequently in the context of operators on (possibly infinite-dimensional) Hilbert space. This norm can be defined in various ways:

where the trace is the sum of diagonal entries, and are the singular values of . The second equality is proven by explicit computation of . The third equality is proven by singular value decomposition of , and the fact that the trace is invariant under circular shifts.

The Frobenius norm is an extension of the Euclidean norm to and comes from the Frobenius inner product on the space of all matrices.

The Frobenius norm is sub-multiplicative and is very useful for numerical linear algebra. The sub-multiplicativity of Frobenius norm can be proved using Cauchy–Schwarz inequality.

Frobenius norm is often easier to compute than induced norms, and has the useful property of being invariant under rotations (and unitary operations in general). That is, for any unitary matrix . This property follows from the cyclic nature of the trace ():

and analogously:

where we have used the unitary nature of (that is, ).

It also satisfies

and

where is the Frobenius inner product, and Re is the real part of a complex number (irrelevant for real matrices)

Max norm

The max norm is the elementwise norm in the limit as p = q goes to infinity:

This norm is not sub-multiplicative.

Note that in some literature (such as Communication complexity), an alternative definition of max-norm, also called the -norm, refers to the factorization norm:

Schatten norms

The Schatten p-norms arise when applying the p-norm to the vector of singular values of a matrix. [2] If the singular values of the matrix are denoted by σi, then the Schatten p-norm is defined by

These norms again share the notation with the induced and entry-wise p-norms, but they are different.

All Schatten norms are sub-multiplicative. They are also unitarily invariant, which means that for all matrices and all unitary matrices and .

The most familiar cases are p = 1, 2, . The case p = 2 yields the Frobenius norm, introduced before. The case p =  yields the spectral norm, which is the operator norm induced by the vector 2-norm (see above). Finally, p = 1 yields the nuclear norm (also known as the trace norm, or the Ky Fan 'n'-norm [7] ), defined as:

where denotes a positive semidefinite matrix such that . More precisely, since is a positive semidefinite matrix, its square root is well defined. The nuclear norm is a convex envelope of the rank function , so it is often used in mathematical optimization to search for low-rank matrices.

Combining von Neumann's trace inequality with Hölder's inequality for Euclidean space yields a version of Hölder's inequality for Schatten norms for :

In particular, this implies the Schatten norm inequality

Monotone norms

A matrix norm is called monotone if it is monotonic with respect to the Loewner order. Thus, a matrix norm is increasing if

The Frobenius norm and spectral norm are examples of monotone norms. [8]

Cut norms

Another source of inspiration for matrix norms arises from considering a matrix as the adjacency matrix of a weighted, directed graph. [9] The so-called "cut norm" measures how close the associated graph is to being bipartite:

where AKm×n. [9] [10] [11] Equivalent definitions (up to a constant factor) impose the conditions 2|S| > n& 2|T| > m; S = T; or ST = . [10]

The cut-norm is equivalent to the induced operator norm ‖·‖→1, which is itself equivalent to another norm, called the Grothendieck norm. [11]

To define the Grothendieck norm, first note that a linear operator K1K1 is just a scalar, and thus extends to a linear operator on any KkKk. Moreover, given any choice of basis for Kn and Km, any linear operator KnKm extends to a linear operator (Kk)n → (Kk)m, by letting each matrix element on elements of Kk via scalar multiplication. The Grothendieck norm is the norm of that extended operator; in symbols: [11]

The Grothendieck norm depends on choice of basis (usually taken to be the standard basis) and k.

Equivalence of norms

For any two matrix norms and , we have that:

for some positive numbers r and s, for all matrices . In other words, all norms on are equivalent; they induce the same topology on . This is true because the vector space has the finite dimension .

Moreover, for every vector norm on , there exists a unique positive real number such that is a sub-multiplicative matrix norm for every .

A sub-multiplicative matrix norm is said to be minimal, if there exists no other sub-multiplicative matrix norm satisfying .

Examples of norm equivalence

Let once again refer to the norm induced by the vector p-norm (as above in the Induced norm section).

For matrix of rank , the following inequalities hold: [12] [13]

See also

Notes

  1. The condition only applies when the product is defined, such as the case of square matrices (m = n).

Related Research Articles

In mathematics, an operator is generally a mapping or function that acts on elements of a space to produce elements of another space. There is no general definition of an operator, but the term is often used in place of function when the domain is a set of functions or other structured objects. Also, the domain of an operator is often difficult to characterize explicitly, and may be extended so as to act on related objects. See Operator (physics) for other examples.

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

<span class="mw-page-title-main">Matrix multiplication</span> Mathematical operation in linear algebra

In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices A and B is denoted as AB.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates with coefficients in another ring, often a field.

In mathematics, the (field) norm is a particular mapping defined in field theory, which maps elements of a larger field into a subfield.

In mathematics, the field trace is a particular function defined with respect to a finite field extension L/K, which is a K-linear map from L onto K.

In physics, the S-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).

In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group.

In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix

In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the Euclidean norm, the 2-norm, or, sometimes, the magnitude of the vector. This norm can be defined as the square root of the inner product of a vector with itself.

In mathematics, the Smith normal form is a normal form that can be defined for any matrix with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained from the original matrix by multiplying on the left and right by invertible square matrices. In particular, the integers are a PID, so one can always calculate the Smith normal form of an integer matrix. The Smith normal form is very useful for working with finitely generated modules over a PID, and in particular for deducing the structure of a quotient of a free module. It is named after the Irish mathematician Henry John Stephen Smith.

<span class="mw-page-title-main">LSZ reduction formula</span> Connection between correlation functions and the S-matrix

In quantum field theory, the Lehmann–Symanzik–Zimmermann (LSZ) reduction formula is a method to calculate S-matrix elements from the time-ordered correlation functions of a quantum field theory. It is a step of the path that starts from the Lagrangian of some quantum field theory and leads to prediction of measurable quantities. It is named after the three German physicists Harry Lehmann, Kurt Symanzik and Wolfhart Zimmermann.

<span class="mw-page-title-main">Real coordinate space</span> Space formed by the n-tuples of real numbers

In mathematics, the real coordinate space or real coordinate n-space, of dimension n, denoted Rn or , is the set of all ordered n-tuples of real numbers, that is the set of all sequences of n real numbers, also known as coordinate vectors. Special cases are called the real lineR1, the real coordinate planeR2, and the real coordinate three-dimensional spaceR3. With component-wise addition and scalar multiplication, it is a real vector space.

In the mathematical field of linear algebra and convex analysis, the numerical range or field of values of a complex matrix A is the set

In mathematics, the discrete Fourier transform over a ring generalizes the discrete Fourier transform (DFT), of a function whose values are commonly complex numbers, over an arbitrary ring.

<span class="mw-page-title-main">Structure constants</span> Coefficients of an algebra over a field

In mathematics, the structure constants or structure coefficients of an algebra over a field are the coefficients of the basis expansion of the products of basis vectors. Because the product operation in the algebra is bilinear, by linearity knowing the product of basis vectors allows to compute the product of any elements . Therefore, the structure constants can be used to specify the product operation of the algebra. Given the structure constants, the resulting product is obtained by bilinearity and can be uniquely extended to all vectors in the vector space, thus uniquely determining the product for the algebra.

In mathematics, the oscillator representation is a projective unitary representation of the symplectic group, first investigated by Irving Segal, David Shale, and André Weil. A natural extension of the representation leads to a semigroup of contraction operators, introduced as the oscillator semigroup by Roger Howe in 1988. The semigroup had previously been studied by other mathematicians and physicists, most notably Felix Berezin in the 1960s. The simplest example in one dimension is given by SU(1,1). It acts as Möbius transformations on the extended complex plane, leaving the unit circle invariant. In that case the oscillator representation is a unitary representation of a double cover of SU(1,1) and the oscillator semigroup corresponds to a representation by contraction operators of the semigroup in SL(2,C) corresponding to Möbius transformations that take the unit disk into itself.

In mathematics, particularly in linear algebra and applications, matrix analysis is the study of matrices and their algebraic properties. Some particular topics out of many include; operations defined on matrices, functions of matrices, and the eigenvalues of matrices.

In mathematics, a transformation of a sequence's generating function provides a method of converting the generating function for one sequence into a generating function enumerating another. These transformations typically involve integral formulas applied to a sequence generating function or weighted sums over the higher-order derivatives of these functions.

References

  1. 1 2 Weisstein, Eric W. "Matrix Norm". mathworld.wolfram.com. Retrieved 2020-08-24.
  2. 1 2 3 4 "Matrix norms". fourier.eng.hmc.edu. Retrieved 2020-08-24.
  3. Malek-Shahmirzadi, Massoud (1983). "A characterization of certain classes of matrix norms". Linear and Multilinear Algebra. 13 (2): 97–99. doi:10.1080/03081088308817508. ISSN   0308-1087.
  4. Horn, Roger A. (2012). Matrix analysis. Johnson, Charles R. (2nd ed.). Cambridge: Cambridge University Press. pp. 340–341. ISBN   978-1-139-77600-4. OCLC   817236655.
  5. Carl D. Meyer, Matrix Analysis and Applied Linear Algebra, §5.2, p.281, Society for Industrial & Applied Mathematics, June 2000.
  6. Ding, Chris; Zhou, Ding; He, Xiaofeng; Zha, Hongyuan (June 2006). "R1-PCA: Rotational Invariant L1-norm Principal Component Analysis for Robust Subspace Factorization". Proceedings of the 23rd International Conference on Machine Learning. ICML '06. Pittsburgh, Pennsylvania, USA: ACM. pp. 281–288. doi:10.1145/1143844.1143880. ISBN   1-59593-383-2.
  7. Fan, Ky. (1951). "Maximum properties and inequalities for the eigenvalues of completely continuous operators". Proceedings of the National Academy of Sciences of the United States of America. 37 (11): 760–766. Bibcode:1951PNAS...37..760F. doi: 10.1073/pnas.37.11.760 . PMC   1063464 . PMID   16578416.
  8. Ciarlet, Philippe G. (1989). Introduction to numerical linear algebra and optimisation. Cambridge, England: Cambridge University Press. p. 57. ISBN   0521327881.
  9. 1 2 Frieze, Alan; Kannan, Ravi (1999-02-01). "Quick Approximation to Matrices and Applications". Combinatorica. 19 (2): 175–220. doi:10.1007/s004930050052. ISSN   1439-6912. S2CID   15231198.
  10. 1 2 Lovász László (2012). "The cut distance". Large Networks and Graph Limits. AMS Colloquium Publications. Vol. 60. Providence, RI: American Mathematical Society. pp. 127–131. ISBN   978-0-8218-9085-1. Note that Lovász rescales A to lie in [0, 1].
  11. 1 2 3 Alon, Noga; Naor, Assaf (2004-06-13). "Approximating the cut-norm via Grothendieck's inequality". Proceedings of the thirty-sixth annual ACM symposium on Theory of computing. STOC '04. Chicago, IL, USA: Association for Computing Machinery. pp. 72–80. doi:10.1145/1007352.1007371. ISBN   978-1-58113-852-8. S2CID   1667427.
  12. Golub, Gene; Charles F. Van Loan (1996). Matrix Computations – Third Edition. Baltimore: The Johns Hopkins University Press, 56–57. ISBN   0-8018-5413-X.
  13. Roger Horn and Charles Johnson. Matrix Analysis, Chapter 5, Cambridge University Press, 1985. ISBN   0-521-38632-2.

Bibliography