Mellitic acid

Last updated
Mellitic acid [1]
Mellitic-acid.svg
Mellitic-acid-from-xtal-3D-bs-17.png
Mellitic-acid-from-xtal-3D-sf.png
Names
Preferred IUPAC name
Benzenehexacarboxylic acid
Other names
Graphitic acid
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.007.495 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C12H6O12/c13-7(14)1-2(8(15)16)4(10(19)20)6(12(23)24)5(11(21)22)3(1)9(17)18/h(H,13,14)(H,15,16)(H,17,18)(H,19,20)(H,21,22)(H,23,24) Yes check.svgY
    Key: YDSWCNNOKPMOTP-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C12H6O12/c13-7(14)1-2(8(15)16)4(10(19)20)6(12(23)24)5(11(21)22)3(1)9(17)18/h(H,13,14)(H,15,16)(H,17,18)(H,19,20)(H,21,22)(H,23,24)
    Key: YDSWCNNOKPMOTP-UHFFFAOYAB
  • O=C(O)c1c(c(c(c(c1C(=O)O)C(=O)O)C(=O)O)C(=O)O)C(=O)O
Properties
C12H6O12
Molar mass 342.16 g/mol
Density 1.68 g/cm3, 2.078 (calc.) [3]
Melting point >300 °C (572 °F; 573 K)
Boiling point 678 °C (1,252 °F; 951 K) (calc.) [3]
Acidity (pKa)5.0, 2.19, 3.31, 4.78, 5.89, 6.96 [4]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Mellitic acid, also called graphitic acid or benzenehexacarboxylic acid, is an acid first discovered in 1799 by Martin Heinrich Klaproth in the mineral mellite (honeystone), which is the aluminium salt of the acid. [5] It crystallizes in fine silky needles and is soluble in water and alcohol.

Contents

Structure

The stable conformation of this molecule has the carboxylic acid groups rotated out of the plane of the central benzene ring. The molecule adopts a propeller-like conformation in which the tilt of each carboxylic acid group relative to the central benzene ring varies due to intramolecular hydrogen bonding. [2]

Preparation

Mellitic acid may be prepared by warming mellite with ammonium carbonate, boiling off the excess of the ammonium salt, and adding ammonia to the solution. The precipitated alumina is filtered off, the filtrate evaporated, and the ammonium salt of the acid purified by recrystallization. The ammonium salt is then converted into the lead salt by precipitation with lead acetate, and the lead salt is then decomposed by hydrogen sulfide. The acid may also be prepared by the oxidation of pure carbon, graphite or hexamethylbenzene, by alkaline potassium permanganate in the cold, or by hot concentrated nitric acid. [6]

Reactions

It is a very stable compound; chlorine, concentrated nitric acid and hydriodic acid do not react with it. It is decomposed, on dry distillation, into carbon dioxide and pyromellitic acid, C10H6O8; when distilled with lime it gives carbon dioxide and benzene. Long digestion of the acid with an excess of phosphorus pentachloride forms the acid chloride, which crystallizes in needles, and melts at 190 °C. By heating the ammonium salt of the acid to 150–160 °C while ammonia is evolved, a mixture of paramide (mellimide, molecular formula C
6
(CONHCO)
3
), and ammonium euchroate is obtained. The mixture may be separated by dissolving out the ammonium euchroate with water. Paramide is a white amorphous powder, insoluble in water and alcohol.

The high stability of mellitic acid salts and their presence as an endproduct of the oxidation of polycyclic aromatic hydrocarbons, which are present in the solar system, make them a possible organic substance in Martian soil. [7]

Mellitates (and salts of other benzene polycarboxylic acids) of iron and cobalt have interesting magnetic properties. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Acid</span> Chemical compound giving a proton or accepting an electron pair

An acid is a molecule or ion capable of either donating a proton (i.e. hydrogen ion, H+), known as a Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis acid.

<span class="mw-page-title-main">Ammonia</span> Chemical compound (NH₃)

Ammonia is an inorganic chemical compound of nitrogen and hydrogen with the formula NH3. A stable binary hydride and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous waste, and it contributes significantly to the nutritional needs of terrestrial organisms by serving as a precursor to fertilisers. Around 70% of ammonia produced industrially is used to make fertilisers in various forms and composition, such as urea and diammonium phosphate. Ammonia in pure form is also applied directly into the soil.

In chemistry, amines are compounds and functional groups that contain a basic nitrogen atom with a lone pair. Amines are formally derivatives of ammonia, wherein one or more hydrogen atoms have been replaced by a substituent such as an alkyl or aryl group. Important amines include amino acids, biogenic amines, trimethylamine, and aniline. Inorganic derivatives of ammonia are also called amines, such as monochloramine.

<span class="mw-page-title-main">Carboxylic acid</span> Organic compound containing a –C(=O)OH group

In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group attached to an R-group. The general formula of a carboxylic acid is often written as R−COOH or R−CO2H, sometimes as R−C(O)OH with R referring to the alkyl, alkenyl, aryl, or other group. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.

<span class="mw-page-title-main">Nitrogen</span> Chemical element, symbol N and atomic number 7

Nitrogen is a chemical element; it has symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh in total abundance in the Milky Way and the Solar System. At standard temperature and pressure, two atoms of the element bond to form N2, a colorless and odorless diatomic gas. N2 forms about 78% of Earth's atmosphere, making it the most abundant uncombined element in air. Because of the volatility of nitrogen compounds, nitrogen is relatively rare in the solid parts of the Earth.

Nitric acid is the inorganic compound with the formula HNO3. It is a highly corrosive mineral acid. The compound is colorless, but samples tend to acquire a yellow cast over time due to decomposition into oxides of nitrogen. Most commercially available nitric acid has a concentration of 68% in water. When the solution contains more than 86% HNO3, it is referred to as fuming nitric acid. Depending on the amount of nitrogen dioxide present, fuming nitric acid is further characterized as red fuming nitric acid at concentrations above 86%, or white fuming nitric acid at concentrations above 95%.

<span class="mw-page-title-main">Organic compound</span> Chemical compound with carbon-hydrogen bonds

In chemistry, many authors consider an organic compound to be any chemical compound that contains carbon–hydrogen or carbon–carbon bonds, however, some authors consider an organic compound to be any chemical compound that contains carbon. The definition of "organic" versus "inorganic", and whether some other carbon-containing compounds are organic or inorganic vary from author to author, and are topics of debate. For example, carbon-containing compounds such as alkanes and its derivatives are considered organic, but many others are considered inorganic, such as halides of carbon without carbon-hydrogen and carbon-carbon bonds, and certain compounds of carbon with nitrogen and oxygen.

Urea, also called carbamide, is an organic compound with chemical formula CO(NH2)2. This amide has two amino groups joined by a carbonyl functional group. It is thus the simplest amide of carbamic acid.

Chemistry is the physical science concerned with the composition, structure, and properties of matter, as well as the changes it undergoes during chemical reactions.

<span class="mw-page-title-main">Dinitrogen pentoxide</span> Chemical compound

Dinitrogen pentoxide is the chemical compound with the formula N2O5. It is one of the binary nitrogen oxides, a family of compounds that only contain nitrogen and oxygen. It exists as colourless crystals that sublime slightly above room temperature, yielding a colorless gas.

<span class="mw-page-title-main">Industrial processes</span> Process of producing goods

Industrial processes are procedures involving chemical, physical, electrical, or mechanical steps to aid in the manufacturing of an item or items, usually carried out on a very large scale. Industrial processes are the key components of heavy industry.

<span class="mw-page-title-main">Ammonium carbonate</span> Chemical used as leavening agent and smelling salt

Ammonium carbonate is a salt with the chemical formula (NH4)2CO3. Since it readily degrades to gaseous ammonia and carbon dioxide upon heating, it is used as a leavening agent and also as smelling salt. It is also known as baker's ammonia and is a predecessor to the more modern leavening agents baking soda and baking powder. It is a component of what was formerly known as sal volatile and salt of hartshorn, and produces a pungent smell when baked. It comes in the form of a white powder or block, with a molar mass of 96.09 g/mol and a density of 1.50 g/cm3. It is a strong electrolyte.

Triethylamine is the chemical compound with the formula N(CH2CH3)3, commonly abbreviated Et3N. It is also abbreviated TEA, yet this abbreviation must be used carefully to avoid confusion with triethanolamine or tetraethylammonium, for which TEA is also a common abbreviation. It is a colourless volatile liquid with a strong fishy odor reminiscent of ammonia. Like diisopropylethylamine (Hünig's base), triethylamine is commonly employed in organic synthesis, usually as a base.

<span class="mw-page-title-main">Kipp's apparatus</span> Laboratory device for preparing gases

Kipp's apparatus, also called a Kipp generator, is an apparatus designed for preparation of small volumes of gases. It was invented around 1844 by the Dutch pharmacist Petrus Jacobus Kipp and widely used in chemical laboratories and for demonstrations in schools into the second half of the 20th century.

The chemical element nitrogen is one of the most abundant elements in the universe and can form many compounds. It can take several oxidation states; but the most common oxidation states are -3 and +3. Nitrogen can form nitride and nitrate ions. It also forms a part of nitric acid and nitrate salts. Nitrogen compounds also have an important role in organic chemistry, as nitrogen is part of proteins, amino acids and adenosine triphosphate.

Iodine can form compounds using multiple oxidation states. Iodine is quite reactive, but it is much less reactive than the other halogens. For example, while chlorine gas will halogenate carbon monoxide, nitric oxide, and sulfur dioxide, iodine will not do so. Furthermore, iodination of metals tends to result in lower oxidation states than chlorination or bromination; for example, rhenium metal reacts with chlorine to form rhenium hexachloride, but with bromine it forms only rhenium pentabromide and iodine can achieve only rhenium tetraiodide. By the same token, however, since iodine has the lowest ionisation energy among the halogens and is the most easily oxidised of them, it has a more significant cationic chemistry and its higher oxidation states are rather more stable than those of bromine and chlorine, for example in iodine heptafluoride.

In electrochemistry, electrosynthesis is the synthesis of chemical compounds in an electrochemical cell. Compared to ordinary redox reactions, electrosynthesis sometimes offers improved selectivity and yields. Electrosynthesis is actively studied as a science and also has industrial applications. Electrooxidation has potential for wastewater treatment as well.

Carbamic acid, which might also be called aminoformic acid or aminocarboxylic acid, is the chemical compound with the formula H2NCOOH. It can be obtained by the reaction of ammonia NH3 and carbon dioxide CO2 at very low temperatures, which also yields ammonium carbamate [NH4]+[NH2CO2]. The compound is stable only up to about 250 K (−23 °C); at higher temperatures it decomposes into those two gases. The solid apparently consists of dimers, with the two molecules connected by hydrogen bonds between the two carboxyl groups –COOH.

<span class="mw-page-title-main">Hexamethylbenzene</span> Chemical compound

Hexamethylbenzene, also known as mellitene, is a hydrocarbon with the molecular formula C12H18 and the condensed structural formula C6(CH3)6. It is an aromatic compound and a derivative of benzene, where benzene's six hydrogen atoms have each been replaced by a methyl group. In 1929, Kathleen Lonsdale reported the crystal structure of hexamethylbenzene, demonstrating that the central ring is hexagonal and flat and thereby ending an ongoing debate about the physical parameters of the benzene system. This was a historically significant result, both for the field of X-ray crystallography and for understanding aromaticity.

<span class="mw-page-title-main">Thorium(IV) nitrate</span> Chemical compound

Thorium(IV) nitrate is a chemical compound, a salt of thorium and nitric acid with the formula Th(NO3)4. A white solid in its anhydrous form, it can form tetra- and pentahydrates. As a salt of thorium it is weakly radioactive.

References

  1. MSDS for mellitic acid [ permanent dead link ]
  2. Bart, J. C. J. (1968). "The crystal structure of a modification of hexaphenylbenzene". Acta Crystallographica Section B. 24 (10): 1277–1287. doi:10.1107/S0567740868004176.
  3. 1 2 Curate Data: Predicted Properties: 2244. ChemSpider.com.
  4. Brown, H.C., et al., in Baude, E.A. and Nachod, F.C., Determination of Organic Structures by Physical Methods, Academic Press, New York, 1955.
  5. Klaproth (1802). Beiträge zur chemischen Kenntniss der Mineralkörper, Band 3 (in German). p. 114.
  6. WebElements.com
  7. S. A. Benner; K. G. Devine; L. N. Matveeva; D. H. Powell (2000). "The missing organic molecules on Mars". Proceedings of the National Academy of Sciences . 97 (6): 2425–2430. doi: 10.1073/pnas.040539497 . PMC   15945 . PMID   10706606.
  8. Kurmoo M, Estournes C, Oka Y, Kumagai H, Inoue K (2005) Inorganic Chemistry volume 44, page 217

Further reading

Henry Enfield Roscoe, Carl Scholemmer, "Mellitene Group", " A Treatise on Chemistry : V.III: The Chemistry of the Hydrocarbons and their Derivatives on Organic Chemistry: P.V:529. D. Appleton and Co. (1889).

Wikisource-logo.svg This article incorporates text from a publication now in the public domain :  Chisholm, Hugh, ed. (1911). "Mellitic Acid". Encyclopædia Britannica . Vol. 18 (11th ed.). Cambridge University Press. p. 95.