Mersenne conjectures

Last updated

In mathematics, the Mersenne conjectures concern the characterization of a kind of prime numbers called Mersenne primes, meaning prime numbers that are a power of two minus one.

Contents

Original Mersenne conjecture

The original, called Mersenne's conjecture, was a statement by Marin Mersenne in his Cogitata Physico-Mathematica (1644; see e.g. Dickson 1919) that the numbers were prime for n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 and 257, and were composite for all other positive integers n ≤ 257. The first seven entries of his list ( for n = 2, 3, 5, 7, 13, 17, 19) had already been proven to be primes by trial division before Mersenne's time; [1] only the last four entries were new claims by Mersenne. Due to the size of those last numbers, Mersenne did not and could not test all of them, nor could his peers in the 17th century. It was eventually determined, after three centuries and the availability of new techniques such as the Lucas–Lehmer test, that Mersenne's conjecture contained five errors, namely two entries are composite (those corresponding to the primes n = 67, 257) and three primes are missing (those corresponding to the primes n = 61, 89, 107). The correct list for n ≤ 257 is: n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107 and 127.

While Mersenne's original conjecture is false, it may have led to the New Mersenne conjecture.

New Mersenne conjecture

The New Mersenne conjecture or Bateman, Selfridge and Wagstaff conjecture (Bateman et al. 1989) states that for any odd natural number p, if any two of the following conditions hold, then so does the third:

  1. p = 2k ± 1 or p = 4k ± 3 for some natural number k. ( OEIS:  A122834 )
  2. 2p − 1 is prime (a Mersenne prime). ( OEIS:  A000043 )
  3. (2p +1)/3 is prime (a Wagstaff prime). ( OEIS:  A000978 )

If p is an odd composite number, then 2p  1 and (2p + 1)/3 are both composite. Therefore it is only necessary to test primes to verify the truth of the conjecture.

Currently, there are nine known numbers for which all three conditions hold: 3, 5, 7, 13, 17, 19, 31, 61, 127 (sequence A107360 in the OEIS ). Bateman et al. expected that no number greater than 127 satisfies all three conditions, and showed that heuristically no greater number would even satisfy two conditions, which would make the New Mersenne Conjecture trivially true.

As of 2024, all the Mersenne primes up to 257885161 − 1 are known, and for none of these does the third condition hold except for the ones just mentioned. [2] [3] Primes which satisfy at least one condition are

2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 67, 79, 89, 101, 107, 127, 167, 191, 199, 257, 313, 347, 521, 607, 701, 1021, 1279, 1709, 2203, 2281, 2617, 3217, 3539, 4093, 4099, 4253, 4423, 5807, 8191, 9689, 9941, ... (sequence A120334 in the OEIS )

Note that the two primes for which the original Mersenne conjecture is false (67 and 257) satisfy the first condition of the new conjecture (67 = 26 + 3, 257 = 28 +1), but not the other two. 89 and 107, which were missed by Mersenne, satisfy the second condition but not the other two. Mersenne may have thought that 2p − 1 is prime only if p = 2k ± 1 or p = 4k ± 3 for some natural number k, but if he thought it was "if and only if" he would have included 61.

Status of new Mersenne conjecture for the first 100 primes
2 [4] 357111317192329
31374143475359616771
7379838997101103107109113
127131137139149151157163167173
179181191193197199211223227229
233239241251257263269271277281
283293307311313317331337347349
353359367373379383389397401409
419421431433439443449457461463
467479487491499503509521523541
Red: p is of the form 2n±1 or 4n±3Cyan background: 2p−1 is primeItalics: (2p+1)/3 is primeBold: p satisfies at least one condition

The New Mersenne conjecture can be thought of as an attempt to salvage the centuries-old Mersenne's conjecture, which is false. However, according to Robert D. Silverman, John Selfridge agreed that the New Mersenne conjecture is "obviously true" as it was chosen to fit the known data and counter-examples beyond those cases are exceedingly unlikely. It may be regarded more as a curious observation than as an open question in need of proving.

Prime Pages shows that the New Mersenne conjecture is true for all integers less than or equal to 30402457 [2] by systematically listing all primes for which it is already known that one of the conditions holds.

Lenstra–Pomerance–Wagstaff conjecture

Lenstra, Pomerance, and Wagstaff have conjectured that there are infinitely many Mersenne primes, and, more precisely, that the number of Mersenne primes less than x is asymptotically approximated by

[5]

where γ is the Euler–Mascheroni constant. In other words, the number of Mersenne primes with exponent p less than y is asymptotically

[5]

This means that there should on average be about ≈ 5.92 primes p of a given number of decimal digits such that is prime. The conjecture is fairly accurate for the first 40 Mersenne primes, but between 220,000,000 and 285,000,000 there are at least 12, [6] rather than the expected number which is around 3.7.

More generally, the number of primes py such that is prime (where a, b are coprime integers, a > 1, −a < b < a, a and b are not both perfect r-th powers for any natural number r >1, and −4ab is not a perfect fourth power) is asymptotically

where m is the largest nonnegative integer such that a and −b are both perfect 2m-th powers. The case of Mersenne primes is one case of (a, b) = (2,1).

See also

Related Research Articles

<span class="mw-page-title-main">Carmichael number</span> Composite number in number theory

In number theory, a Carmichael number is a composite number , which in modular arithmetic satisfies the congruence relation:

In mathematics, the factorial of a non-negative integer , denoted by , is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial:

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form Mn = 2n − 1 for some integer n. They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17th century. If n is a composite number then so is 2n − 1. Therefore, an equivalent definition of the Mersenne primes is that they are the prime numbers of the form Mp = 2p − 1 for some prime p.

<span class="mw-page-title-main">Prime number</span> Number divisible only by 1 or itself

A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order.

<span class="mw-page-title-main">Perfect number</span> Integer equal to the sum of its proper divisors

In number theory, a perfect number is a positive integer that is equal to the sum of its positive divisors, excluding the number itself. For instance, 6 has divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number.

In number theory, the Fermat pseudoprimes make up the most important class of pseudoprimes that come from Fermat's little theorem.

<span class="mw-page-title-main">Euler's totient function</span> Number of integers coprime to and not exceeding n

In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n. It is written using the Greek letter phi as or , and may also be called Euler's phi function. In other words, it is the number of integers k in the range 1 ≤ kn for which the greatest common divisor gcd(n, k) is equal to 1. The integers k of this form are sometimes referred to as totatives of n.

11 (eleven) is the natural number following 10 and preceding 12. It is the first repdigit. In English, it is the smallest positive integer whose name has three syllables.

In recreational mathematics, a repunit is a number like 11, 111, or 1111 that contains only the digit 1 — a more specific type of repdigit. The term stands for "repeated unit" and was coined in 1966 by Albert H. Beiler in his book Recreations in the Theory of Numbers.

In recreational mathematics, a repdigit or sometimes monodigit is a natural number composed of repeated instances of the same digit in a positional number system. The word is a portmanteau of "repeated" and "digit". Examples are 11, 666, 4444, and 999999. All repdigits are palindromic numbers and are multiples of repunits. Other well-known repdigits include the repunit primes and in particular the Mersenne primes.

In number theory, a Wieferich prime is a prime number p such that p2 divides 2p − 1 − 1, therefore connecting these primes with Fermat's little theorem, which states that every odd prime p divides 2p − 1 − 1. Wieferich primes were first described by Arthur Wieferich in 1909 in works pertaining to Fermat's Last Theorem, at which time both of Fermat's theorems were already well known to mathematicians.

127 is the natural number following 126 and preceding 128. It is also a prime number.

In mathematics, a double Mersenne number is a Mersenne number of the form

In number theory, a Wagstaff prime is a prime number of the form

John Lewis Selfridge, was an American mathematician who contributed to the fields of analytic number theory, computational number theory, and combinatorics.

In number theory, a Pierpont prime is a prime number of the form

<span class="mw-page-title-main">Firoozbakht's conjecture</span>

In number theory, Firoozbakht's conjecture is a conjecture about the distribution of prime numbers. It is named after the Iranian mathematician Farideh Firoozbakht who stated it first in 1982.

In number theory, Gillies' conjecture is a conjecture about the distribution of prime divisors of Mersenne numbers and was made by Donald B. Gillies in a 1964 paper in which he also announced the discovery of three new Mersenne primes. The conjecture is a specialization of the prime number theorem and is a refinement of conjectures due to I. J. Good and Daniel Shanks. The conjecture remains an open problem: several papers give empirical support, but it disagrees with the widely accepted Lenstra–Pomerance–Wagstaff conjecture.

References

  1. See the sources given for the individual primes in List of Mersenne primes and perfect numbers.
  2. 1 2 "The New Mersenne Prime Conjecture". t5k.org.
  3. Wanless, James. "Mersenneplustwo Factorizations".
  4. 2=20 + 1 satisfies exactly two of the three conditions, but is explicitly excluded from the conjecture due to being even
  5. 1 2 Heuristics: Deriving the Wagstaff Mersenne Conjecture. The Prime Pages. Retrieved on 2014-05-11.
  6. Michael Le Page (Aug 10, 2019). "Inside the race to find the first billion-digit prime number". New Scientist.