Michael F. Cohen

Last updated
Michael F. Cohen
Michael Cohen.jpg
Alma mater Beloit College
Rutgers University
Cornell University
University of Utah
Awards
Scientific career
Fields Computer graphics
Institutions Cornell University
University of Utah
Princeton University
Microsoft Research
University of Washington
Facebook Research
Thesis Spacetime control of linked figures  (1992)
Doctoral advisor Elaine Cohen

Michael F. Cohen is an American computer scientist and researcher in computer graphics. He is currently a Senior Fellow at Meta in their Generative AI Group. He was a senior research scientist at Microsoft Research for 21 years until he joined Facebook (now Meta) in 2015. [1] In 1998, he received the ACM SIGGRAPH CG Achievement Award for his work in developing radiosity methods for realistic image synthesis. [2] He was elected a Fellow of the Association for Computing Machinery in 2007 for his "contributions to computer graphics and computer vision." [3] In 2019, he received the ACM SIGGRAPH Steven A. Coons Award for Outstanding Creative Contributions to Computer Graphics for “his groundbreaking work in numerous areas of research—radiosity, motion simulation & editing, light field rendering, matting & compositing, and computational photography”. [4]

Contents

Education

Cohen attended Beloit College for his undergraduate degree, graduating with a BA in 1976 in art and Rutgers University with a BS in civil engineering in 1983. He received his master's degree in computer graphics from Cornell University in 1985. [5] He received his PhD in computer science in 1992 from the University of Utah.

Scientific career

At Cornell University's Program of Computer Graphics, Cohen served as an assistant professor of architecture from 1985–1989. His first major research contributions were in the area of photorealistic rendering, in particular, in the study of radiosity: the use of finite elements to solve the rendering equation for environments with diffusely reflecting surfaces. His most significant results included the hemicube (1985), [6] for computing form factors in the presence of occlusion; an experimental evaluation framework (1986), one of the first studies to quantitatively compare real and synthetic imagery; extending radiosity to non-diffuse environments (1986); integrating ray tracing with radiosity (1987); progressive refinement (1988), to make interactive rendering possible.

After completing his PhD, he joined the Computer Science faculty at Princeton University, where he continued his work on Radiosity, including wavelet radiosity (1993), a more general framework for hierarchical approaches; and “radioptimization” (1993), an inverse method to solve for lighting parameters based on user-specified objectives. All of this work culminated in a 1993 textbook with John Wallace, Radiosity and Realistic Image Synthesis.

In a very different research area, Cohen made significant contributions to motion simulation and editing, most significantly: dynamic simulation with kinematic constraints (1987), which for the first time allowed animators to combine kinematic and dynamic specifications; interactive spacetime control for animation (1992), which combined physically-based and user-defined constraints for controlling motion.

In 1994, Cohen moved to Microsoft Research (MSR) where he stayed for 21 years. There he continued work on motion synthesis; motion transitions using spacetime constraints (1996), which allowed seamless and plausible transitions between motion segments for systems with many degrees of freedom such as the human body; motion interpolation (1998), a system for real-time interpolation of parameterized motions; and artist-directed inverse kinematics (2001), which allowed a user to position an articulated character at high frame rates, for real-time applications such as games.

In addition, at Microsoft Research, in his groundbreaking and most-cited work, Cohen and colleagues introduced the Lumigraph (1996), [7] a method for capturing and representing the complete appearance—from all points of view—of either a synthetic or real-world object or scene. Building on this work, Cohen published important follow-on papers in view-based rendering (1997), which used geometric information to create views of a scene from a sparse set of images; and unstructured Lumigraph rendering (2001), which generalized light field and view-dependent texture mapping methods in a single framework.

In subsequent work, Cohen significantly advanced the state of the art in matting & compositing, with papers on image and video segmentation based on anisotropic kernel mean-shift (2004); video cutout (2004), which preserved smoothness across space and time; optimized color sampling (2005), which improved previous approaches to image matting by analyzing the confidence of foreground and background color samples; and soft scissors (2007), the first interactive tool for high-quality image matting and compositing.

Most recently, Cohen has turned his attention to computational photography, publishing numerous highly creative, landmark papers: interactive digital photomontage (2004), [8] for combining parts of photographs in various novel ways; flash/no-flash image pairs (2004), for combining images taken with and without flash to synthesize new higher-quality results than either image alone; panoramic video textures (2005), for converting a panning video over a dynamic scene to a high-resolution continuously playing video; gaze-based photo cropping (2006); multi-viewpoint panoramas (2006), for photographing and rendering very long scenes; the Moment Camera (2007) outlining general principles for capturing subjective moments; joint bilateral upsampling (2007), for fast image enhancement using a down-sampled image; gigapixel images (2007), a means to acquire extremely high-resolution images with an ordinary camera on a specialized mount; deep photo (2008), a system for enhancing casual outdoor photos by combining them with existing digital terrain data; image deblurring (2010), to deblur images captured with camera shake; GradientShop (2010), which unified previous gradient-domain solutions under a single optimization framework; and ShadowDraw (2011), a system for guiding the freeform drawing of objects.

In 2015, Cohen moved to Facebook where he directed the Computational Photography group. His group's best known product is 3D Photos first appearing in the Facebook feed in 2018. [9] In 2023, he moved to a new Generative AI group which has released Generative AI image creation at imagine.meta.com . Cohen is a longtime volunteer in the ACM SIGGRAPH community. He served on the SIGGRAPH Papers Committee eleven times, and as SIGGRAPH Papers Chair in 1998. Cohen also served as SIGGRAPH Awards Chair from 2013 until 2018. He was a keynote speaker at SIGGRAPH Asia 2018. Cohen also serves as an Affiliate Professor of Computer Science and Engineering at the University of Washington, [10] and at Dartmouth College. [11]

Related Research Articles

<span class="mw-page-title-main">Rendering (computer graphics)</span> Process of generating an image from a model

Rendering or image synthesis is the process of generating a photorealistic or non-photorealistic image from a 2D or 3D model by means of a computer program. The resulting image is referred to as the render. Multiple models can be defined in a scene file containing objects in a strictly defined language or data structure. The scene file contains geometry, viewpoint, textures, lighting, and shading information describing the virtual scene. The data contained in the scene file is then passed to a rendering program to be processed and output to a digital image or raster graphics image file. The term "rendering" is analogous to the concept of an artist's impression of a scene. The term "rendering" is also used to describe the process of calculating effects in a video editing program to produce the final video output.

<span class="mw-page-title-main">Global illumination</span> Group of rendering algorithms used in 3D computer graphics

Global illumination (GI), or indirect illumination, is a group of algorithms used in 3D computer graphics that are meant to add more realistic lighting to 3D scenes. Such algorithms take into account not only the light that comes directly from a light source, but also subsequent cases in which light rays from the same source are reflected by other surfaces in the scene, whether reflective or not.

<span class="mw-page-title-main">Radiosity (computer graphics)</span> Computer graphics rendering method using diffuse reflection

In 3D computer graphics, radiosity is an application of the finite element method to solving the rendering equation for scenes with surfaces that reflect light diffusely. Unlike rendering methods that use Monte Carlo algorithms, which handle all types of light paths, typical radiosity only account for paths which leave a light source and are reflected diffusely some number of times before hitting the eye. Radiosity is a global illumination algorithm in the sense that the illumination arriving on a surface comes not just directly from the light sources, but also from other surfaces reflecting light. Radiosity is viewpoint independent, which increases the calculations involved, but makes them useful for all viewpoints.

<span class="mw-page-title-main">Lance Williams (graphics researcher)</span> American graphics researcher

Lance J. Williams was a prominent graphics researcher who made major contributions to texture map prefiltering, shadow rendering algorithms, facial animation, and antialiasing techniques. Williams was one of the first people to recognize the potential of computer graphics to transform film and video making.

<span class="mw-page-title-main">Non-photorealistic rendering</span> Style of rendering

Non-photorealistic rendering (NPR) is an area of computer graphics that focuses on enabling a wide variety of expressive styles for digital art, in contrast to traditional computer graphics, which focuses on photorealism. NPR is inspired by other artistic modes such as painting, drawing, technical illustration, and animated cartoons. NPR has appeared in movies and video games in the form of cel-shaded animation as well as in scientific visualization, architectural illustration and experimental animation.

<span class="mw-page-title-main">Rendering equation</span> Integral equation

In computer graphics, the rendering equation is an integral equation in which the equilibrium radiance leaving a point is given as the sum of emitted plus reflected radiance under a geometric optics approximation. It was simultaneously introduced into computer graphics by David Immel et al. and James Kajiya in 1986. The various realistic rendering techniques in computer graphics attempt to solve this equation.

<span class="mw-page-title-main">Loren Carpenter</span> American computer graphics researcher

Loren C. Carpenter is a computer graphics researcher and developer.

<span class="mw-page-title-main">Marc Levoy</span>

Marc Levoy is a computer graphics researcher and Professor Emeritus of Computer Science and Electrical Engineering at Stanford University, a vice president and Fellow at Adobe Inc., and a Distinguished Engineer at Google. He is noted for pioneering work in volume rendering, light fields, and computational photography.

<span class="mw-page-title-main">Pat Hanrahan</span> American computer graphics researcher

Patrick M. Hanrahan is an American computer graphics researcher, the Canon USA Professor of Computer Science and Electrical Engineering in the Computer Graphics Laboratory at Stanford University. His research focuses on rendering algorithms, graphics processing units, as well as scientific illustration and visualization. He has received numerous awards, including the 2019 Turing Award.

Computer graphics lighting is the collection of techniques used to simulate light in computer graphics scenes. While lighting techniques offer flexibility in the level of detail and functionality available, they also operate at different levels of computational demand and complexity. Graphics artists can choose from a variety of light sources, models, shading techniques, and effects to suit the needs of each application.

<span class="mw-page-title-main">Fluid animation</span> Computer graphics techniques for generating realistic animations of fluids

Fluid animation refers to computer graphics techniques for generating realistic animations of fluids such as water and smoke. Fluid animations are typically focused on emulating the qualitative visual behavior of a fluid, with less emphasis placed on rigorously correct physical results, although they often still rely on approximate solutions to the Euler equations or Navier–Stokes equations that govern real fluid physics. Fluid animation can be performed with different levels of complexity, ranging from time-consuming, high-quality animations for films, or visual effects, to simple and fast animations for real-time animations like computer games.

<span class="mw-page-title-main">Tomoyuki Nishita</span>

Tomoyuki Nishita is a professor at the University of Tokyo. Dr. Nishita received a research award for computer graphics from the Information Processing Society of Japan in 1987, and also received the Steven Anson Coons Award from the ACM SIGGRAPH in 2005.

<span class="mw-page-title-main">James F. O'Brien</span> American computer graphics academic

James F. O'Brien is a computer graphics researcher and professor of computer science and electrical engineering at the University of California, Berkeley. He is also co-founder and chief science officer at Avametric, a company developing software for virtual clothing try on. In 2015, he received an award for Scientific and Technical Achievement from the Academy of Motion Pictures Arts and Sciences.

Brian A. Barsky is a professor at the University of California, Berkeley, working in computer graphics and geometric modeling as well as in optometry and vision science. He is a Professor of Computer Science and Vision Science and an Affiliate Professor of Optometry. He is also a member of the Joint Graduate Group in Bioengineering, an inter-campus program, between UC Berkeley and UC San Francisco.

<span class="mw-page-title-main">Andrew Witkin</span> American computer scientist (1952–2010)

Andrew Paul Witkin was an American computer scientist who made major contributions in computer vision and computer graphics.

Gradient domain image processing, also called Poisson image editing, is a type of digital image processing that operates directly on the differences between neighboring pixels, rather than on the pixel values. Mathematically, an image gradient represents the derivative of an image, so the goal of gradient domain processing is to construct a new image by integrating the gradient, which requires solving Poisson's equation.

Holly Rushmeier is an American computer scientist and is the John C. Malone Professor of Computer Science at Yale University. She is known for her contributions to the field of computer graphics.

Thomas K. Porter is the senior vice president of production strategy at Pixar and one of the studio's founding employees.

<span class="mw-page-title-main">Michael Kass</span> American computer scientist

Michael Kass is an American computer scientist best known for his work in computer graphics and computer vision. He has won an Academy Award and the SIGGRAPH Computer Graphics Achievement Award and is an ACM Fellow.

Kavita Bala is an American computer scientist, academic and entrepreneur. She is a Professor in the Department of Computer Science at Cornell University. After serving as department chair from 2018–2020, she was appointed Dean of the Faculty for Computing and Information Science, now known as the Ann S. Bowers College of Computing and Information Science.

References

  1. "Michael Cohen". Facebook Research. Retrieved 2 July 2017.
  2. "1998 CG Achievement Award: Michael F. Cohen". ACM SIGGRAPH. 4 January 2015. Retrieved 2 July 2017.
  3. "ACM Fellows - Michael F. Cohen". ACM Awards. ACM. Retrieved 2 July 2017.
  4. "2019 Steven A. Coons Award: Michael F. Cohen". ACM SIGGRAPH. Retrieved 2020-07-28.
  5. "50th Anniversary Symposium Speaker Bios". Department of Computer Science. Cornell University. Retrieved 2 July 2017.
  6. Cohen, Michael; Greenberg, Donald (1985-07-01). "The hemi-cube: A radiosity solution for complex environments". ACM SIGGRAPH Computer Graphics. 19 (3): 31–40. doi:10.1145/325165.325171.
  7. "The lumigraph | Proceedings of the 23rd annual conference on Computer graphics and interactive techniques". doi: 10.1145/237170.237200 . S2CID   2036193.{{cite journal}}: Cite journal requires |journal= (help)
  8. Interactive digital photomontage | ACM SIGGRAPH 2004 Papers. August 2004. pp. 294–302. doi:10.1145/1186562.1015718. ISBN   978-1-4503-7823-9. S2CID   5699077 . Retrieved 2020-07-31.{{cite book}}: |website= ignored (help)
  9. "3D Photos Now Rolling out on Facebook and in VR" . Retrieved 2020-07-28.
  10. "Affiliate Faculty | Paul G. Allen School of Computer Science & Engineering". www.cs.washington.edu. Retrieved 2020-07-28.
  11. "Michael Cohen". Department of Computer Science. 2014-12-11. Retrieved 2023-12-18.