Micromechanical Flying Insect

Last updated

The Micromechanical Flying Insect (MFI) is a miniature UAV (unmanned aerial vehicle) composed of a metal body, two wings, and a control system. Launched in 1998, it is currently being researched at University of California, Berkeley. [1] The MFI is among a group of UAVs that vary in size and function. The MFI is proving to be a practical approach for specific situations. The US Office of Naval Research and Defense Advanced Research Project Agency are funding the project. The Pentagon hopes to use the robots as covert "flies on the wall" in military operations. [2] [3] Other prospective uses include space exploration and search and rescue. [4]

Contents

Comparison with other UAVs

There are a variety of UAVs that perform different operations. The MFI is of greatest potential use to the United States Military. There are currently various UAVs in this field that perform tasks such as gaining battlefield intelligence or being a decoy for potential missiles. In respect to gaining battlefield intelligence there are many drones in use by the military to execute different missions. [5] The US Military is constantly upgrading to stealthier UAVs that can perform more missions while remaining virtually undetected. Essential qualifications for a military grade UAV include:

This is what makes the MFI a great candidate for the military. It takes the functions of larger UAVs and crunches it down into a miniature undetectable device. It virtually eliminates size and noise level and increases versatility beyond the capabilities of current UAVs. The actual "crunching" of these capabilities into the MFI raises the problem of creating a supple frame and a pair of wings with an autonomous computer to control them.

Technical aspects

Structure and materials

The initial prototypes of the MFI weighed 100 milligrams and had wingspans of 2 centimeters. They were structured with stainless steel beams and polymer flexures as joints. This created a weight-to-lift ratio that led to an issue with achieving flight. The beams and joints were then changed to lighter materials that perform better. The beams were converted from stainless steel to honey-comb carbon fiber beams, while the joints were changed to silicon, mimicking typical micromechanical structures. These raw materials used cost around 10 cents to construct. [6]

Functions and mobility

The overall functionality of the MFI is broken up into smaller components that cohesively work with one another to sustain a stable and particular flight pattern. These components are:

These units work together to take a specific task, such as "fly forward", as an input and signals are sent through to both wings to produce a calibrated output to perform the task. This is a more in depth view of the flow of operations; the initial visual system analyzes the location in three-dimensional space, through computing the displacement between objects and itself. The fly is then chosen to execute a task, i.e. "find an object" or "explore". Unlike other UAVs, the MFI has to have an autonomous computer system because it is too small to be controlled by a remote, so it must be able to sustain itself. Once the action has been chosen the signal moves on to the inertial system to then distribute the specific functions, in respect to the action, to the wings. The wings then use a number of sensors to deliver the most accurate wing thrusts to fulfill the action. [7]

Problems and complications

There are problems pertaining to this system that have arisen during the development of the MFI, and this has demanded further research. The first problem is the initial input of visual data that is to be computed. There is a substantial degree of noise in the data obtained through the "eyes", when this is passed through the system to the wings it produces an inaccurate output therefore not achieving the initial action correctly. [7]

Another problem is the "hovering" method of the MFI. Essentially the MFI has to be in equilibrium in three-dimensional space while producing a wing thrust that will sustain the desired altitude. The issue with this concept is the inadequate research on the flight patterns of flies, furthermore creating an algorithm to perform such patterns. [7]

Timeline of development

Related Research Articles

<span class="mw-page-title-main">Unmanned aerial vehicle</span> Aircraft without any human pilot on board

An unmanned aerial vehicle (UAV), commonly known as a drone, is an aircraft without any human pilot, crew, or passengers on board. UAVs were originally developed through the twentieth century for military missions too "dull, dirty or dangerous" for humans, and by the twenty-first, they had become essential assets to most militaries. As control technologies improved and costs fell, their use expanded to many non-military applications. These include aerial photography, area coverage, precision agriculture, forest fire monitoring, river monitoring, environmental monitoring, policing and surveillance, infrastructure inspections, smuggling, product deliveries, entertainment, and drone racing.

<span class="mw-page-title-main">Flight</span> Process by which an object moves, through an atmosphere or beyond it

Flight or flying is the process by which an object moves through a space without contacting any planetary surface, either within an atmosphere or through the vacuum of outer space. This can be achieved by generating aerodynamic lift associated with gliding or propulsive thrust, aerostatically using buoyancy, or by ballistic movement.

<span class="mw-page-title-main">Ornithopter</span> Aircraft which use flapping movement of the wings to generate lift

An ornithopter is an aircraft that flies by flapping its wings. Designers sought to imitate the flapping-wing flight of birds, bats, and insects. Though machines may differ in form, they are usually built on the same scale as flying animals. Larger, crewed ornithopters have also been built and some have been successful. Crewed ornithopters are generally powered either by engines or by the pilot.

<span class="mw-page-title-main">Micro air vehicle</span> Class of very small unmanned aerial vehicle

A micro air vehicle (MAV), or micro aerial vehicle, is a class of man-portable miniature UAVs whose size enables them to be used in low-altitude, close-in support operations. Modern MAVs can be as small as 5 centimeters - compare Nano Air Vehicle. Development is driven by commercial, research, government, and military organizations; with insect-sized aircraft reportedly expected in the future. The small craft allow remote observation of hazardous environments or of areas inaccessible to ground vehicles. Hobbyists have designed MAVs for applications such as aerial robotics contests and aerial photography. MAVs can offer autonomous modes of flight.

<span class="mw-page-title-main">Elevon</span> Aircraft control surface used to control pitch and roll

Elevons or tailerons are aircraft control surfaces that combine the functions of the elevator and the aileron, hence the name. They are frequently used on tailless aircraft such as flying wings. An elevon that is not part of the main wing, but instead is a separate tail surface, is a stabilator.

<span class="mw-page-title-main">Aircraft flight control system</span> How aircraft are controlled

A conventional fixed-wing aircraft flight control system (AFCS) consists of flight control surfaces, the respective cockpit controls, connecting linkages, and the necessary operating mechanisms to control an aircraft's direction in flight. Aircraft engine controls are also considered flight controls as they change speed.

<span class="mw-page-title-main">Boeing X-48</span> Airplane

The Boeing X-48 is an American experimental unmanned aerial vehicle (UAV) built to investigate the characteristics of blended wing body (BWB) aircraft. Boeing designed the X-48 and two examples were built by Cranfield Aerospace in the UK. Boeing began flight testing the X-48B version for NASA in 2007. The X-48B was later modified into the X-48C version, which was flight tested from August 2012 to April 2013. Boeing and NASA plan to develop a larger BWB demonstrator.

<span class="mw-page-title-main">Mikoyan Project 1.44</span> Fighter technology demonstrator aircraft

The Mikoyan Project 1.44/1.42 is a multirole fighter technology demonstrator developed by the Mikoyan design bureau. It was designed for the Soviet Union's MFI project for the I-90 program, the answer to the U.S.'s Advanced Tactical Fighter (ATF). The MFI was to incorporate many fifth-generation jet fighter features such as supermaneuverability, supercruise, and advanced avionics, as well as some degree of radar signature reduction.

<span class="mw-page-title-main">Elevator (aeronautics)</span> Aircraft control surface used to control pitch

Elevators are flight control surfaces, usually at the rear of an aircraft, which control the aircraft's pitch, and therefore the angle of attack and the lift of the wing. The elevators are usually hinged to the tailplane or horizontal stabilizer. They may be the only pitch control surface present, and are sometimes located at the front of the aircraft or integrated into a rear "all-moving tailplane", also called a slab elevator or stabilator.

<span class="mw-page-title-main">Swarm robotics</span> Coordination of multiple robots as a system

Swarm robotics is an approach to the coordination of multiple robots as a system which consist of large numbers of mostly simple physical robots. ″In a robot swarm, the collective behavior of the robots results from local interactions between the robots and between the robots and the environment in which they act.″ It is supposed that a desired collective behavior emerges from the interactions between the robots and interactions of robots with the environment. This approach emerged on the field of artificial swarm intelligence, as well as the biological studies of insects, ants and other fields in nature, where swarm behaviour occurs.

<span class="mw-page-title-main">Remote control animal</span>

Remote control animals are animals that are controlled remotely by humans. Some applications require electrodes to be implanted in the animal's nervous system connected to a receiver which is usually carried on the animal's back. The animals are controlled by the use of radio signals. The electrodes do not move the animal directly, as if controlling a robot; rather, they signal a direction or action desired by the human operator and then stimulate the animal's reward centres if the animal complies. These are sometimes called bio-robots or robo-animals. They can be considered to be cyborgs as they combine electronic devices with an organic life form and hence are sometimes also called cyborg-animals or cyborg-insects.

<span class="mw-page-title-main">History of unmanned aerial vehicles</span>

Unmanned Aerial Vehicles (UAVs) include both autonomous drones and remotely piloted vehicles (RPVs). A UAV is capable of controlled, sustained level flight and is powered by a jet, reciprocating, or electric engine. In the twenty-first century, technology reached a point of sophistication that the UAV is now being given a greatly expanded role in many areas of aviation.

<span class="mw-page-title-main">Miniature UAV</span> Unmanned aerial vehicle small enough to be man-portable

A miniature UAV, small UAV (SUAV), or drone is an unmanned aerial vehicle small enough to be man-portable. Smallest UAVs are called micro air vehicle.

<span class="mw-page-title-main">Entomopter</span>

An Entomopter is an aircraft that flies using the wing-flapping aerodynamics of an insect. The word is derived from entomo + pteron. Entomopters are type of ornithopter, which is the broader term for any device intended to fly by flapping wings.

The reciprocating chemical muscle (RCM) is a mechanism that takes advantage of the superior energy density of chemical reactions. It is a regenerative device that converts chemical energy into motion through a direct noncombustive chemical reaction.

<span class="mw-page-title-main">BAE Systems Demon</span> Experimental unmanned aerial vehicle

The Demon is an experimental unmanned aerial vehicle (UAV) developed and manufactured by British defence conglomerate BAE Systems. It has been referred to as being the world's first "flapless" aircraft.

<span class="mw-page-title-main">RoboBee</span> Tiny robot capable of flight

RoboBee is a tiny robot capable of partially untethered flight, developed by a research robotics team at Harvard University. The culmination of twelve years of research, RoboBee solved two key technical challenges of micro-robotics. Engineers invented a process inspired by pop-up books that allowed them to build on a sub-millimeter scale precisely and efficiently. To achieve flight, they created artificial muscles capable of beating the wings 120 times per second.

<span class="mw-page-title-main">DelFly</span>

The DelFly is a fully controllable camera-equipped flapping wing Micro Air Vehicle or Ornithopter developed at the Micro Air Vehicle Lab of the Delft University of TechnologyArchived 2019-10-19 at the Wayback Machine in collaboration with Wageningen University.

<span class="mw-page-title-main">Tactical Robotics Cormorant</span> Type of aircraft

The Tactical Robotics Cormorant, formerly AirMule or Mule, Israel Defense Forces (IDF) codename Pereira, is a flying car unmanned aerial vehicle (UAV) built by Tactical Robotics Ltd., a subsidiary of designer Rafi Yoeli's Urban Aeronautics Ltd., in Yavne, Israel. It will be used in search and rescue operations where it is too dangerous or inaccessible for a helicopter, such as evacuating people from the upper stories of burning buildings, or delivering and extracting police and soldiers while very close to structures, narrow streets, or through holes into confined spaces.

<span class="mw-page-title-main">Insectoid robot</span> Robot featuring some insect-like features

An insectoid robot is a, usually small, robot featuring some insect-like features. These can include the methods of locomotion, methods of navigation, and artificial intelligence based on insect models. Many of the problems faced by miniature robot designers have been solved by insect evolution. Researchers naturally look to insects for inspiration and solutions.

References

  1. 1 2 Fearing, Ronald S. "MFI Project"., UC Berkeley.
  2. Bridges, Andrew (July 29, 2002). "Tiny flying robots: future masters of espionage, exploration". Associated Press. Archived from the original on October 29, 2002. Retrieved February 16, 2012.
  3. "That fly may be a spy". The Dallas Morning News . September 14, 1999. Archived from the original on May 25, 2024. Retrieved February 16, 2012.
  4. Knapp, Louise (December 21, 2000). "Look, Up in the Sky: Robofly". Wired News . Archived from the original on June 26, 2012. Retrieved February 16, 2012.
  5. "AeroVironment".
  6. Wood, R. "Microrobotics Using Composite Materials: The Micromechanical Flying Insect Thorax" (PDF).
  7. 1 2 3 Fearing, Ronald. "Flight Control System for a Micromechanical Flying Insect: Architecture and Implementation" (PDF).