Microwave volumetric heating

Last updated

Microwave volumetric heating (MVH) is a method of using microwaves to evenly heat the entire volume of a flowing liquid, suspension or semi-solid. [1] The process is known as MVH because the microwaves penetrate uniformly throughout the volume of the product being heated, thus delivering energy evenly into the body of the material.

Contents

This is in contrast to traditional thermal processing, which relies on conduction and convection from hot surfaces to deliver energy into the product. Liquids, suspensions, or semi-solids heated by MVH do not come into contact with hot surfaces; this minimizes thermal damage to functional components, and allows thick and viscous products to be heated without fouling. [2]

Processing temperatures can be very accurately controlled by varying the flow rate of the product through the MVH treatment chamber. The slower the flow, the higher the final product temperature. Flowing liquids move continuously through a unique treatment chamber, thereby heating the product. [3]

Thermal processing using microwaves

The FDA accepts that microwaves can be used to heat food for commercial use, pasteurization and sterilization. [4] The main mechanism of microbial inactivation by microwaves is due to thermal effect; the phenomenon of lethality due to 'non-thermal effect' is controversial, and the mechanisms suggested include selective heating of micro-organisms, electroporation, cell membrane rupture, and cell lysis due to electromagnetic energy coupling.

Because microwaves transfer electromagnetic energy at a molecular level, and the vibration of the molecules creates heat through friction, it is difficult to properly check for this highly localized 'micro'-thermal effect or create conditions where study of the putative 'athermal' effect is possible. [5]

Processes

Related Research Articles

<span class="mw-page-title-main">Food preservation</span> Inhibition of microbial growth in food

Food preservation includes processes that make food more resistant to microorganism growth and slow the oxidation of fats. This slows down the decomposition and rancidification process. Food preservation may also include processes that inhibit visual deterioration, such as the enzymatic browning reaction in apples after they are cut during food preparation. By preserving food, food waste can be reduced, which is an important way to decrease production costs and increase the efficiency of food systems, improve food security and nutrition and contribute towards environmental sustainability. For instance, it can reduce the environmental impact of food production.

<span class="mw-page-title-main">Pasteurization</span> Process of preserving foods with heat

Pasteurization or pasteurisation is a process of food preservation in which packaged and non-packaged foods are treated with mild heat, usually to less than 100 °C (212 °F), to eliminate pathogens and extend shelf life. The process is intended to destroy or deactivate microorganisms and enzymes that contribute to food spoilage or risk of disease, including vegetative bacteria, but most bacterial spores survive the process.

<span class="mw-page-title-main">Boiling</span> Type of vaporization; bulk phenomenon.

Boiling is the rapid phase transition from liquid to gas or vapor; the reverse of boiling is condensation. Boiling occurs when a liquid is heated to its boiling point, when the temperature at which the vapour pressure of the liquid is equal to the pressure exerted on the liquid by the surrounding atmosphere. Boiling and evaporation is the two main forms of liquid vaporization.

<span class="mw-page-title-main">Microwave oven</span> Kitchen cooking appliance

A microwave oven is an electric oven that heats and cooks food by exposing it to electromagnetic radiation in the microwave frequency range. This induces polar molecules in the food to rotate and produce thermal energy in a process known as dielectric heating. Microwave ovens heat foods quickly and efficiently because excitation is fairly uniform in the outer 25–38 mm(1–1.5 inches) of a homogeneous, high-water-content food item.

<span class="mw-page-title-main">Ultra-high-temperature processing</span> Food sterilization process

Ultra-high temperature processing (UHT), ultra-heat treatment, or ultra-pasteurization is a food processing technology that sterilizes liquid food by heating it above 135 °C (275 °F) – the temperature required to kill bacterial endospores – for 2 to 5 seconds. UHT is most commonly used in milk production, but the process is also used for fruit juices, cream, soy milk, yogurt, wine, soups, honey, and stews. UHT milk was first developed in the 1960s and became generally available for consumption in the 1970s. The heat used during the UHT process can cause Maillard browning and change the taste and smell of dairy products. An alternative process is flash pasteurization, in which the milk is heated to 72 °C (162 °F) for at least 15 seconds.

<span class="mw-page-title-main">Sterilization (microbiology)</span> Process that eliminates all biological agents on an object or in a volume

Sterilization refers to any process that removes, kills, or deactivates all forms of life and other biological agents such as prions present in or on a specific surface, object, or fluid. Sterilization can be achieved through various means, including heat, chemicals, irradiation, high pressure, and filtration. Sterilization is distinct from disinfection, sanitization, and pasteurization, in that those methods reduce rather than eliminate all forms of life and biological agents present. After sterilization, an object is referred to as being sterile or aseptic.

<span class="mw-page-title-main">Blanching (cooking)</span> Brief scalding of food in boiling water

Blanching is a cooking process in which a food, usually a vegetable or fruit, is scalded in boiling water, removed after a brief, timed interval, and finally plunged into iced water or placed under cold running water to halt the cooking process. Blanching foods helps reduce quality loss over time. People often use blanching as a treatment prior to freezing, drying, or canning—heating vegetables or fruits to inactivate enzymes, modify texture, remove the peel, and wilt tissue. The inactivation of enzymes preserves color, flavor, and nutritional value. The process has three stages: preheating, blanching, and cooling. The most common blanching methods for vegetables/fruits are hot water and steam, while cooling is either done using cold water or cool air. Other benefits of blanching include removing pesticide residues and decreasing microbial load. Drawbacks to the blanching process can include leaching of water-soluble and heat sensitive nutrients and the production of effluent.

<span class="mw-page-title-main">Freeze-drying</span> Low temperature dehydration process

Freeze drying, also known as lyophilization or cryodesiccation, is a low temperature dehydration process that involves freezing the product and lowering pressure, removing the ice by sublimation. This is in contrast to dehydration by most conventional methods that evaporate water using heat.

Microwave chemistry is the science of applying microwave radiation to chemical reactions. Microwaves act as high frequency electric fields and will generally heat any material containing mobile electric charges, such as polar molecules in a solvent or conducting ions in a solid. Polar solvents are heated as their component molecules are forced to rotate with the field and lose energy in collisions. Semiconducting and conducting samples heat when ions or electrons within them form an electric current and energy is lost due to the electrical resistance of the material. Microwave heating in the laboratory began to gain wide acceptance following papers in 1986, although the use of microwave heating in chemical modification can be traced back to the 1950s. Although occasionally known by such acronyms as MAOS, MEC or MORE synthesis, these acronyms have had little acceptance outside a small number of groups.

<span class="mw-page-title-main">Dielectric heating</span> Heating using radio waves

Dielectric heating, also known as electronic heating, radio frequency heating, and high-frequency heating, is the process in which a radio frequency (RF) alternating electric field, or radio wave or microwave electromagnetic radiation heats a dielectric material. At higher frequencies, this heating is caused by molecular dipole rotation within the dielectric.

Non-thermal microwave effects or specific microwave effects have been posited in order to explain unusual observations in microwave chemistry. The main effect of the absorption of microwaves by most materials is heating; the random motion of the constituent molecules is increased. Non-thermal effects are effects that are not due to the increase of thermal energy of the material. Instead, the microwave energy itself directly couples to energy modes within the molecule or lattice. Non-thermal effects in liquids are almost certainly non-existent, as the time for energy redistribution between molecules in a liquid is much less than the period of a microwave oscillation. A 2005 review has illustrated this in application to organic chemistry, though clearly supports the existence of non-thermal effects. It has been shown that such non-thermal effects exist in the reaction of O + HCl(DCl) -> OH(OD) + Cl in the gas phase and the authors suggest that some mechanisms may also be present in the condensed phase. Non-thermal effects in solids are still part of an ongoing debate. It is likely that through focusing of electric fields at particle interfaces, microwaves cause plasma formation and enhance diffusion in solids via second-order effects. As a result, they may enhance solid-state sintering processes. Debates continued in 2006 about non-thermal effects of microwaves that have been reported in solid-state phase transitions. A 2013 essay concluded the effect did not exist in organic synthesis involving liquid phases. A 2015 perspective discusses the non-thermal microwave effect in relation to selective heating by Debye relaxation processes.

<span class="mw-page-title-main">Susceptor</span>

A susceptor is a material used for its ability to absorb electromagnetic energy and convert it to heat. The electromagnetic energy is typically radiofrequency or microwave radiation used in industrial heating processes, and also in microwave cooking.

Aseptic processing is a processing technique wherein commercially thermally sterilized liquid products are packaged into previously sterilized containers under sterile conditions to produce shelf-stable products that do not need refrigeration. Aseptic processing has almost completely replaced in-container sterilization of liquid foods, including milk, fruit juices and concentrates, cream, yogurt, salad dressing, liquid egg, and ice cream mix. There has been an increasing popularity for foods that contain small discrete particles, such as cottage cheese, baby foods, tomato products, fruit and vegetables, soups, and rice desserts.

<span class="mw-page-title-main">Pasteurized eggs</span> Packaged eggs pre-processed with medium heat

Pasteurized eggs are eggs that have been pasteurized in order to reduce the risk of food-borne illness in dishes that are not cooked or are only lightly cooked. They may be sold as liquid egg products or pasteurized in the shell.

The microwave heat distribution is the distribution (allocation) of the heat release inside the microwave absorptive material irradiated with high intensive microwaves. The pattern of microwave heat distribution depends on many physical parameters, which may include the electromagnetic field, the specific absorption rate and structure of the processed material, the geometrical dimensions of the processing cavity, etc.
Most of the industrial microwave heating applications need a uniform heat distribution. For example, the uniformity of microwave heat distribution is key parameter in microwave food sterilization, due to the potential danger directly related to human health if the food has not been heated evenly up to desirable temperature for neutralization of possible bacteria population.
There are many different methods for achieving uniform heat distribution inside the irradiated material. They may involve computer simulation and different mechanical mechanisms such as turntables and stirrers. The proper microwave energy pattern is necessary for attaining a uniform heat release.

Pascalization, bridgmanization, high pressure processing (HPP) or high hydrostatic pressure (HHP) processing is a method of preserving and sterilizing food, in which a product is processed under very high pressure, leading to the inactivation of certain microorganisms and enzymes in the food. HPP has a limited effect on covalent bonds within the food product, thus maintaining both the sensory and nutritional aspects of the product. The technique was named after Blaise Pascal, a French scientist of the 17th century whose work included detailing the effects of pressure on fluids. During pascalization, more than 50,000 pounds per square inch may be applied for around fifteen minutes, leading to the inactivation of yeast, mold, and bacteria. Pascalization is also known as bridgmanization, named for physicist Percy Williams Bridgman.

<span class="mw-page-title-main">Thermization</span>

Thermization, also spelled thermisation, is a method of sanitizing raw milk with low heat. "Thermization is a generic description of a range of subpasteurization heat treatments that markedly reduce the number of spoilage bacteria in milk with minimal heat damage." The process is not used on other food products, and is similar to pasteurization but uses lower temperatures, allowing the milk product to retain more of its original taste. In Europe, there is a distinction between cheeses made of thermized milk and raw-milk cheeses. However, the United States' Food and Drug Administration (FDA) places the same regulations on all unpasteurized cheeses. As a result, cheeses from thermized milk must be aged for 60 days or more before being sold in the United States, the same restriction placed on raw-milk cheeses by the FDA.

Protein adsorption refers to the adhesion of proteins to solid surfaces. This phenomenon is an important issue in the food processing industry, particularly in milk processing and wine and beer making. Excessive adsorption, or protein fouling, can lead to health and sanitation issues, as the adsorbed protein is very difficult to clean and can harbor bacteria, as is the case in biofilms. Product quality can be adversely affected if the adsorbed material interferes with processing steps, like pasteurization. However, in some cases protein adsorption is used to improve food quality, as is the case in fining of wines.

Food and biological process engineering is a discipline concerned with applying principles of engineering to the fields of food production and distribution and biology. It is a broad field, with workers fulfilling a variety of roles ranging from design of food processing equipment to genetic modification of organisms. In some respects it is a combined field, drawing from the disciplines of food science and biological engineering to improve the earth's food supply.

Ohmic heating generates heat by passage of electrical current through food which resists the flow of electricity. Heat is generated rapidly and uniformly in the liquid matrix as well as in particulates, producing a higher quality sterile product that is suitable for aseptic processing.

References

  1. Technology Strategy Board. 2012. https://connect.innovateuk.org/documents/3285671/6079410/making+waves+in+food.pdf/42a693dc-c677-43ae-a470-908615ef3885. making waves in food. Archived 2016-03-05 at the Wayback Machine
  2. Queen Margaret University. 2012. http://www.qmu.ac.uk/marketing/press_releases/microwave_technology.htm. experts revolutionise global food processing.
  3. Interface Scotland. 2012. http://www.interface-online.org.uk/case-studies/advanced-microwave-technologies-ltd. Advanced Microwave Technologies.
  4. U.S. Food and Drug Administration. 2012. https://www.fda.gov/Food/FoodScienceResearch/SafePracticesforFoodProcesses/ucm100250.htm. Kinetics of microbial inactivation for alternative food processing technologies – Microwave and radio frequency processing.
  5. Shamis (October 2012). "Review of the specific effects of microwave radiation on bacterial cells". Applied Microbiology and Biotechnology. 96 (2): 319–25. doi:10.1007/s00253-012-4339-y. PMID   22875401.