Morphogenetic field

Last updated
A. G. Gurwitsch analysed the embryonic development of the sea urchin as a vector-field, as if the proliferation of cells into organs were brought about by putative external forces. Morphogenetic.gif
A. G. Gurwitsch analysed the embryonic development of the sea urchin as a vector-field, as if the proliferation of cells into organs were brought about by putative external forces.

In the developmental biology of the early twentieth century, a morphogenetic field is a group of cells able to respond to discrete, localized biochemical signals leading to the development of specific morphological structures or organs. [1] [2] The spatial and temporal extents of the embryonic field are dynamic, and within the field is a collection of interacting cells out of which a particular organ is formed. [3] As a group, the cells within a given morphogenetic field are constrained: thus, cells in a limb field will become a limb tissue, those in a cardiac field will become heart tissue. [4] However, specific cellular programming of individual cells in a field is flexible: an individual cell in a cardiac field can be redirected via cell-to-cell signaling to replace specific damaged or missing cells. [4] Imaginal discs in insect larvae are examples of morphogenetic fields. [5]

Contents

Historical development

The concept of the morphogenetic field, fundamental in the early twentieth century to the study of embryological development, was first introduced in 1910 by Alexander G. Gurwitsch. [6] Experimental support was provided by Ross Granville Harrison's experiments transplanting fragments of a newt embryo into different locations. [7]

Harrison was able to identify "fields" of cells producing organs such as limbs, tail and gills and to show that these fields could be fragmented or have undifferentiated cells added and a complete normal final structure would still result. It was thus considered that it was the "field" of cells, rather than individual cells, that were patterned for subsequent development of particular organs. The field concept was developed further by Harrison's friend Hans Spemann, and then by Paul Weiss and others. [3] The concept was similar to the meaning of the term entelechy of vitalists like Hans Adolf Eduard Driesch (1867–1941).

By the 1930s, however, the work of geneticists, especially Thomas Hunt Morgan, revealed the importance of chromosomes and genes for controlling development, and the rise of the new synthesis in evolutionary biology lessened the perceived importance of the field hypothesis. Morgan was a particularly harsh critic of fields since the gene and the field were perceived as competitors for recognition as the basic unit of ontogeny. [3] With the discovery and mapping of master control genes, such as the homeobox genes the pre-eminence of genes seemed assured. But in the late twentieth century the field concept was "rediscovered" as a useful part of developmental biology. It was found, for example, that different mutations could cause the same malformations, suggesting that the mutations were affecting a complex of structures as a unit, a unit that might correspond to the field of early 20th century embryology.

Scott F. Gilbert proposed that the morphogenetic field is a middle ground between genes and evolution. [3] That is, genes act upon fields, which then act upon the developing organism. [3] Jessica Bolker described morphogenetic fields not merely as incipient structures or organs, but as dynamic entities with their own localized development processes, which are central to the emerging field of Evolutionary developmental biology ("evo-devo"). [8] In 2005, Sean B. Carroll and colleagues mention morphogenetic fields only as a concept proposed by early embryologists to explain the finding that a forelimb bud could be transplanted and still give rise to a forelimb; they define "field" simply as "a discrete region" in an embryo. [9]

Related Research Articles

Developmental biology is the study of the process by which animals and plants grow and develop. Developmental biology also encompasses the biology of regeneration, asexual reproduction, metamorphosis, and the growth and differentiation of stem cells in the adult organism.

<span class="mw-page-title-main">Evolutionary developmental biology</span> Comparison of organism developmental processes

Evolutionary developmental biology is a field of biological research that compares the developmental processes of different organisms to infer how developmental processes evolved.

<span class="mw-page-title-main">Homeobox</span> DNA pattern affecting anatomy development

A homeobox is a DNA sequence, around 180 base pairs long, that regulates large-scale anatomical features in the early stages of embryonic development. Mutations in a homeobox may change large-scale anatomical features of the full-grown organism.

<span class="mw-page-title-main">Gastrulation</span> Stage in embryonic development in which germ layers form

Gastrulation is the stage in the early embryonic development of most animals, during which the blastula, or in mammals the blastocyst, is reorganized into a two-layered or three-layered embryo known as the gastrula. Before gastrulation, the embryo is a continuous epithelial sheet of cells; by the end of gastrulation, the embryo has begun differentiation to establish distinct cell lineages, set up the basic axes of the body, and internalized one or more cell types including the prospective gut.

<span class="mw-page-title-main">Somitogenesis</span>

Somitogenesis is the process by which somites form. Somites are bilaterally paired blocks of paraxial mesoderm that form along the anterior-posterior axis of the developing embryo in segmented animals. In vertebrates, somites give rise to skeletal muscle, cartilage, tendons, endothelium, and dermis.

<span class="mw-page-title-main">Apical ectodermal ridge</span>

The apical ectodermal ridge (AER) is a structure that forms from the ectodermal cells at the distal end of each limb bud and acts as a major signaling center to ensure proper development of a limb. After the limb bud induces AER formation, the AER and limb mesenchyme—including the zone of polarizing activity (ZPA)—continue to communicate with each other to direct further limb development.

<span class="mw-page-title-main">Limb development</span>

Limb development in vertebrates is an area of active research in both developmental and evolutionary biology, with much of the latter work focused on the transition from fin to limb.

The limb bud is a structure formed early in vertebrate limb development. As a result of interactions between the ectoderm and underlying mesoderm, formation occurs roughly around the fourth week of development. In the development of the human embryo the upper limb bud appears in the third week and the lower limb bud appears four days later.

<span class="mw-page-title-main">HOXD13</span> Protein

Homeobox protein Hox-D13 is a protein that in humans is encoded by the HOXD13 gene. This gene belongs to the homeobox family of genes. The homeobox genes encode a highly conserved family of transcription factors that play an important role in morphogenesis in all multicellular organisms.

<span class="mw-page-title-main">HOXD11</span> Protein-coding gene in humans

Homeobox protein Hox-D11 is a protein that in humans is encoded by the HOXD11 gene.

<span class="mw-page-title-main">PRRX1</span> Protein-coding gene in the species Homo sapiens

Paired related homeobox 1 is a protein that in humans is encoded by the PRRX1 gene.

<i>EN1</i> (gene) Protein-coding gene in the species Homo sapiens

Homeobox protein engrailed-1 is a protein that in humans is encoded by the EN1 gene.

<span class="mw-page-title-main">Deep homology</span> Control of growth and differentiation by deeply conserved genetic mechanisms

In evolutionary developmental biology, the concept of deep homology is used to describe cases where growth and differentiation processes are governed by genetic mechanisms that are homologous and deeply conserved across a wide range of species.

<span class="mw-page-title-main">Gerd B. Müller</span> Austrian biologist (born 1953)

Gerd B. Müller is an Austrian biologist who is emeritus professor at the University of Vienna where he was the head of the Department of Theoretical Biology in the Center for Organismal Systems Biology. His research interests focus on vertebrate limb development, evolutionary novelties, evo-devo theory, and the Extended Evolutionary Synthesis. He is also concerned with the development of 3D based imaging tools in developmental biology.

Skeletogenesis is a key morphogenetic event in the embryonic development of vertebrates and is of equal, although transient, importance in the development of the sea urchin, a marine invertebrate. The larval sea urchin does not resemble its adult form, because the sea urchin is an indirect developer, meaning its larva form must undergo metamorphosis to form the juvenile adult. Here, the focus is on skeletogenesis in the sea urchin species Strongylocentrotus purpuratus, as this species has been most thoroughly studied and characterized.

<span class="mw-page-title-main">Rudolf Raff</span> American biologist (1941–2019)

Rudolf Albert Raff was an American biologist, and James H. Rudy Professor of Biology at Indiana University. He was known for research in, and promotion of, evolutionary developmental biology. He was also director of the Indiana Molecular Biology Institute.

<span class="mw-page-title-main">Hox genes in amphibians and reptiles</span>

Hox genes play a massive role in some amphibians and reptiles in their ability to regenerate lost limbs, especially HoxA and HoxD genes.

Scott Frederick Gilbert is an American evolutionary developmental biologist and historian of biology.

<span class="mw-page-title-main">Evo-devo gene toolkit</span>

The evo-devo gene toolkit is the small subset of genes in an organism's genome whose products control the organism's embryonic development. Toolkit genes are central to the synthesis of molecular genetics, palaeontology, evolution and developmental biology in the science of evolutionary developmental biology (evo-devo). Many of them are ancient and highly conserved among animal phyla.

<span class="mw-page-title-main">Cassandra Extavour</span> Canadian geneticist

Cassandra Extavour is a Canadian geneticist, researcher of organismic and evolutionary biology, professor of molecular and cell biology at Harvard University, and a classical singer. Her research has focused on evolutionary and developmental genetics. She is known for demonstrating that germ cells engage in cell to cell competition before becoming a gamete, which indicates that natural selection can affect and change genetic material before adult sex reproduction takes place. She was also the Director of EDEN, a National Science Foundation-funded research collaborative that encouraged scientists working on organisms other than the standard lab model organisms to share protocols and techniques.

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002). Universal Mechanisms of Animal Development. in: Molecular Biology of the Cell (4th ed.). Garland. ISBN   978-0-8153-3218-3.
  2. Jacobson AG, Sater AK (1 November 1988). "Features of embryonic induction". Development. 104 (3): 341–59. doi:10.1242/dev.104.3.341. PMID   3076860.
  3. 1 2 3 4 5 Gilbert SF, Opitz JM, Raff RA (1996). "Resynthesizing evolutionary and developmental biology". Dev. Biol. 173 (2): 357–72. doi: 10.1006/dbio.1996.0032 . PMID   8605997.
  4. 1 2 Gilbert SF (2003). Developmental biology (7th ed.). Sunderland, Mass: Sinauer Associates. pp. 65–6. ISBN   978-0-87893-258-0.
  5. Alberts B, et al. (2002). Organogenesis and the Patterning of Appendages. in: Molecular Biology of the Cell (4th ed.). Garland. ISBN   978-0-8153-3218-3.
  6. Beloussov, LV (1997). "Life of Alexander G. Gurwitsch and his relevant contribution to the theory of morphogenetic fields". International Journal of Developmental Biology. 41 (6): 771–779. PMID   9449452.[ permanent dead link ], with comment by SF Gilbert and JM Optiz.
  7. de Robertis, EM; Morita, EA; Cho, KWY (1991). "Gradient fields and homeobox genes" (PDF). Development. 112 (3): 669–678. doi:10.1242/dev.112.3.669. PMID   1682124.
  8. Bolker, JA (2000). "Modularity in Development and Why It Matters to Evo-Devo". American Zoologist. 40 (5): 770–776. CiteSeerX   10.1.1.590.6792 . doi:10.1668/0003-1569(2000)040[0770:MIDAWI]2.0.CO;2. S2CID   198157009.
  9. Carroll, Sean B.; Grenier, Jennifer K.; Weatherbee, Scott D. (2005). From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design (2nd ed.). Blackwell. pp. 20, 242. ISBN   978-1-4051-1950-4.

Further reading