MyriaNed

Last updated
MyriaNed logo MyriaNed Logo.png
MyriaNed logo

MyriaNed is a wireless sensor network (WSN) platform developed by DevLab. It uses an epidemic communication style based on standard radio broadcasting. This approach reflects the way humans interact, which is called gossiping. [1] Messages are sent periodically and received by adjoining neighbours. Each message is repeated and duplicated towards all nodes that span the network; it spreads like a virus (hence the term epidemic communication).

Contents

This is a very efficient and robust [2] [3] protocol, mainly for two reasons:

Nodes can be added, removed or may be physically moving without the need to reconfigure the network. The GOSSIP protocol is a self-configuring network solution. The network may even be heterogeneous, where several types of nodes communicate different pieces of information with each other at the same time. This is possible due to the fact that no interpretation of the message content is required in order to be able to forward it to other nodes.

Message communication is fully transparent, providing a seamless communication platform, where new functionality can be added later, without the need to change the installed base. Furthermore, MyriaNed is enabled to update the wireless sensor nodes software by means of “over the air” programming of a deployed network.

Inspiration

Traditionally radio communication is organized according to the master-slave philosophy. The way two nodes communicate is point-to-point. A command is sent top-down and a confirmation is sent bottom-up between two hierarchical levels.

However, in biology this is organized differently. For instance adrenaline in the human body works completely different. This message (hormone and neurotransmitter) is sent to different types of cells. Every cell knows what to do with this message (increase heart rate, constrict blood vessels, dilate air passages) and does not sent a confirmation. This is the inspiration for MyriaNed in a nutshell.

Another inspiration is the basic radio broadcasting principle. A radio with an antenna is made to send and receive a message to and from every direction. Implicitly it is not optimized to perform point-to-point communication. Wires are ideally suitable for that because they always link two devices. Looking at wireless communication, it should be structured in such a way that it uses the potential of radio transmission.

The third inspiration is that of human gossiping. The term is sometimes associated with spreading misinformation of trivial nature but the way information is disseminated is one of the oldest and most common in nature. Information is generated by a source and gossiped to its neighbours. They spread the message to their neighbours, thereby exponentially increasing the number of people familiar with the information.

Together these three inspirations led to the development of the MyriaNed platform. There is no master-slave structure in the network rather each node is hierarchically equal. MyriaNed uses biological routing which is random and independent of the function of the node. Each node decides what to do with a message. Furthermore, it sends the message to all its neighbours thereby using the basic radio communication characteristics.

Technical overview

Data dissemination

In potential the complete set of information (e.g. sensor values, control data) is available to every node in the network. By using an intelligent strategy, called shared state, this information is stored as a distributed database in the network. Nodes that are newly added to the network can utilize this shared state to instantaneously adapt and contribute to the network functionality.

When it comes to caching the messages there are two scenarios. The first scenario, if a message is new to the receiving node (meaning the data was not received in previous communication rounds), the node will store the message in cache and transmit this message to its own neighbours. Secondly, if the message is old (meaning the data was already received before, i.e. through another neighbour), the message is discarded. If the cache is full, different strategies can be employed in order to make room for new messages.

Interoperability

Since there is no top-down structure imposed on the network and data dissemination is transparent, the network is naturally scalable. On the communication level no identification administration is necessary and messages have a standard structure. This makes it possible that a MyriaNed network can scale far beyond the limits of currently available WSN technologies. Also different functionality can be integrated and executed on a single network.

Energy consumption

In order to reduce the energy consumption of the nodes in the network duty cycling is used. This means that nodes communicate periodically, and go to standby mode in a large part of the period in order to preserve energy. In order to communicate the nodes need to wake up at the same time, therefore they have a built-in synchronization mechanism.

Radio communication

During radio communication a TDMA (time-division multiple access) [4] scheme is used to overcome collisions during broadcast communication. Current implementations run on 2.4 GHz and 868 MHz radios. The concept of MyriaNed is however not restricted to these frequencies.

Topology

From the previous characteristics of MyriaNed it can be derived that it uses a true mesh topology. The advantage of such a topology is reliability, and coping with mobility, because of the redundant communication paths in the network.

Setup

Setup and configuration is kept to a bare minimum because of the bottom-up approach utilized in the self-organizing network. There is no notion of a coordinator or network manager entity compared to technologies such as Zigbee or WirelessHART. This reduces the effort spent on setup and maintenance.

Autonomy

When MyriaNed is used for specific applications, the ultimate implementation is based on a large set of autonomous devices which make their own autonomous decisions (e.g. controlling actuators) based on the available information that travels through the network by gossiping dissemination. The sum of all individual behaviors of the network nodes reflect the emergent behavior of the system as a whole, which is the systems application.

Costs

MyriaNed has an extremely small stack, uses low calculation power and does not need a large amount of energy. Therefore, it can be run on a simple microcontroller and small sized battery. This makes the costs of a single node very low.

DevLab members work with a single chip solution in which the radio and microcontroller are integrated. This chip with an attached battery is smaller than a 2 euro coin.

Installation and expansion of networks using the MyriaNed protocol is very cost efficient as well. There is no need for addressing and the information in the network is synchronized over time with added nodes. Therefore, no additional costs have to be made (like gateways/setup/bridges) in order to install or expand the network.

Applications

Because of the structure of MyriaNed there is no need for different profiles for market applications. Different applications can run next to each other without interfering. Instead they will only help each other by increasing the density of the network. Every DevLab member is free to use MyriaNed in whatever market they want. This has resulted in many interoperable devices in completely different applications.

Application areaExample
Building automationLeds control wireless Heat control system
TransportationWireless bicycle brake , Train seatreservation system
Elderly careAmbient Living with Embedded Networks
EventSoundgadget , Social WSN
AgricultureObservation of horticulture in greenhouses

Present implementations

Chess Wise, one of the companies behind DEVLAB, used the MyriaNED technology as an early base for Mymesh, their network protocol. This technology is used to connect, control and analyze thousands of devices simultaneously within demanding environments. [5]

See also

Related Research Articles

OSI model Model of communication of seven abstraction layers

The Open Systems Interconnection model is a conceptual model that characterises and standardises the communication functions of a telecommunication or computing system without regard to its underlying internal structure and technology. Its goal is the interoperability of diverse communication systems with standard communication protocols.

In telecommunications and computer networks, a channel access method or multiple access method allows more than two terminals connected to the same transmission medium to transmit over it and to share its capacity. Examples of shared physical media are wireless networks, bus networks, ring networks and point-to-point links operating in half-duplex mode.

Zigbee is an IEEE 802.15.4-based specification for a suite of high-level communication protocols used to create personal area networks with small, low-power digital radios, such as for home automation, medical device data collection, and other low-power low-bandwidth needs, designed for small scale projects which need wireless connection. Hence, Zigbee is a low-power, low data rate, and close proximity wireless ad hoc network.

IEEE 802.15.4 is a technical standard which defines the operation of low-rate wireless personal area networks (LR-WPANs). It specifies the physical layer and media access control for LR-WPANs, and is maintained by the IEEE 802.15 working group, which defined the standard in 2003. It is the basis for the Zigbee, ISA100.11a, WirelessHART, MiWi, 6LoWPAN, Thread and SNAP specifications, each of which further extends the standard by developing the upper layers which are not defined in IEEE 802.15.4. In particular, 6LoWPAN defines a binding for the IPv6 version of the Internet Protocol (IP) over WPANs, and is itself used by upper layers like Thread.

IS-54 and IS-136 are second-generation (2G) mobile phone systems, known as Digital AMPS (D-AMPS), and a further development of the North American 1G mobile system Advanced Mobile Phone System (AMPS). It was once prevalent throughout the Americas, particularly in the United States and Canada since the first commercial network was deployed in 1993. D-AMPS is considered end-of-life, and existing networks have mostly been replaced by GSM/GPRS or CDMA2000 technologies.

Mesh networking Computer networking using a mesh topology

A mesh network is a local network topology in which the infrastructure nodes connect directly, dynamically and non-hierarchically to as many other nodes as possible and cooperate with one another to efficiently route data from/to clients. This lack of dependency on one node allows for every node to participate in the relay of information. Mesh networks dynamically self-organize and self-configure, which can reduce installation overhead. The ability to self-configure enables dynamic distribution of workloads, particularly in the event a few nodes should fail. This in turn contributes to fault-tolerance and reduced maintenance costs.

Clock synchronization is a topic in computer science and engineering that aims to coordinate otherwise independent clocks. Even when initially set accurately, real clocks will differ after some amount of time due to clock drift, caused by clocks counting time at slightly different rates. There are several problems that occur as a result of clock rate differences and several solutions, some being more appropriate than others in certain contexts.

The Time-Triggered Protocol (TTP) is an open computer network protocol for control systems. It was designed as a time-triggered fieldbus for vehicles and industrial applications. and standardized in 2011 as SAE AS6003. TTP controllers have accumulated over 500 million flight hours in commercial DAL A aviation application, in power generation, environmental and flight controls. TTP is used in FADEC and modular aerospace controls, and flight computers. In addition, TTP devices have accumulated over 1 billion operational hours in SIL4 railway signalling applications.

Mutual authentication or two-way authentication refers to two parties authenticating each other at the same time in an authentication protocol. It is a default mode of authentication in some protocols and optional in others (TLS).

Computer network Network that allows computers to share resources and communicate with each other

A computer network is a group of computers that use a set of common communication protocols over digital interconnections for the purpose of sharing resources located on or provided by the network nodes. The interconnections between nodes are formed from a broad spectrum of telecommunication network technologies, based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.

6LoWPAN is an acronym of IPv6 over Low -Power Wireless Personal Area Networks. 6LoWPAN is the name of a concluded working group in the Internet area of the IETF.

A wireless ad hoc network (WANET) or mobile ad hoc network (MANET) is a decentralized type of wireless network. The network is ad hoc because it does not rely on a pre-existing infrastructure, such as routers in wired networks or access points in managed (infrastructure) wireless networks. Instead, each node participates in routing by forwarding data for other nodes, so the determination of which nodes forward data is made dynamically on the basis of network connectivity and the routing algorithm in use.

Low-energy adaptive clustering hierarchy ("LEACH") is a TDMA-based MAC protocol which is integrated with clustering and a simple routing protocol in wireless sensor networks (WSNs). The goal of LEACH is to lower the energy consumption required to create and maintain clusters in order to improve the life time of a wireless sensor network.

ANT is a proprietary multicast wireless sensor network technology designed and marketed by ANT Wireless. It is primarily used for sports and fitness sensors. ANT was introduced by Dynastream Innovations in 2003, followed by the low-power standard ANT+ in 2004, before Dynastream was bought by Garmin in 2006.

Key distribution is an important issue in wireless sensor network (WSN) design. WSNs are networks of small, battery-powered, memory-constraint devices named sensor nodes, which have the capability of wireless communication over a restricted area. Due to memory and power constraints, they need to be well arranged to build a fully functional network.

Sensor node

A sensor node, also known as a mote, is a node in a sensor network that is capable of performing some processing, gathering sensory information and communicating with other connected nodes in the network. A mote is a node but a node is not always a mote.

A virtual sensor network (VSN) is an emerging form of collaborative wireless sensor networks. In contrast to early wireless sensor networks that were dedicated to a specific application, VSNs enable multi-purpose, collaborative, and resource efficient WSNs. The key idea difference of VSNs is the collaboration and resource sharing. By doing so nodes achieve application objectives in a more resource efficient way. These networks may further involve dynamically varying subset of sensor nodes and/or users .
A VSN can be formed by providing logical connectivity among collaborative sensors. Nodes can be grouped into different VSNs based on the phenomenon they track or the task they perform. VSNs are expected to provide the protocol support for formation, usage, adaptation, and maintenance of subset of sensors collaborating on a specific task(s). Even the nodes that do not sense the particular event/phenomenon could be part of a VSN as far as they are willing to allow sensing nodes to communicate through them. Thus, VSNs make use of intermediate nodes, networks, or other VSNs to efficiently deliver messages across members of a VSN.

OCARI

OCARI is a low-rate wireless personal area networks (LR-WPAN) communication protocol that derives from the IEEE 802.15.4 standard. It was developed by the following consortium during the OCARI project that is funded by the French National Research Agency (ANR):

A mobile wireless sensor network (MWSN) can simply be defined as a wireless sensor network (WSN) in which the sensor nodes are mobile. MWSNs are a smaller, emerging field of research in contrast to their well-established predecessor. MWSNs are much more versatile than static sensor networks as they can be deployed in any scenario and cope with rapid topology changes. However, many of their applications are similar, such as environment monitoring or surveillance. Commonly, the nodes consist of a radio transceiver and a microcontroller powered by a battery, as well as some kind of sensor for detecting light, heat, humidity, temperature, etc.

Zebra Media Access Control (Z-MAC) is a network protocol for wireless sensor networks. It controls how a Media Access Control (MAC) accesses a common communication medium of a network.

References

  1. Anemaet, Pieter (2008). Distributed G-MAC: A flexible MAC protocol for Servicing Gossip Algorithms (M.Sc. thesis). Technical University Delft, The Netherlands.
  2. Blagojevic, M.; Nabi, M.; Geilen, M.; Basten, T.; Hendriks, T.; Steine, M. (28 July 2011). A Probabilistic Acknowledgment Mechanism for Wireless Sensor Networks (PDF). 6th IEEE International Conferences on Networking, Architecture and Storage (NAS) . Retrieved 11 January 2012.
  3. Nabi, Majid; Basten, Twan; Geilen, Marc; Blagojevic, Milos; Hendriks, Teun (10 September 2010). A Robust Protocol Stack for Multi-hop Wireless Body Area Networks with Transmit Power Adaptation (PDF). 5th Annual International ICST Conference on Body Area Networks (BodyNets) 2010.
  4. Assegei, Fasika (2008). Decentralized frame synchronization of a TDMA based wireless sensor network (M.Sc. thesis). Technical University Eindhoven, The Netherlands.
  5. https://ledmagazine.nl/nieuws/i19059/chess-lanceert-lichtcontroller-micro-blc

EPapplication 2301302,van der Wateren, Frits,"Broadcast-only distributed wireless network",published 2009-06-22, assigned to CHESS