Nanocar

Last updated
Nanocar with C60 fullerene wheels [1]
Nanocar2.png
Names
Preferred IUPAC name
74,165-Bis[(2,5-bis(decyloxy)-4-{[(C60-Ih)[5,6]fulleren-1(9H)-yl]ethynyl}phenyl)ethynyl]-42,45,102,105,132,135,192,195-octakis(decyloxy)-19H,229H-1,22(1)-di(C60-Ih)[5,6]fullerena-4,10,13,19(1,4),7,16(1,2)-hexabenzenadodecaphane-2,5,8,11,14,17,20-heptayne
Identifiers
3D model (JSmol)
ChemSpider
  • InChI=1S/C430H274O12/c1-13-25-37-49-61-73-85-97-135-431-179-153-173(181(433-137-99-87-75-63-51-39-27-15-3)151-171(179)123-119-165-147-161(111-115-167-149-187(439-143-105-93-81-69-57-45-33-21-9)175(157-183(167)435-139-101-89-77-65-53-41-29-17-5)127-131-427-415-399-375-319-287-255-207-195-191-196-208(207)256-264-248-224(196)232-216-203(191)215-231-223(195)247-263(255)311(319)343-335-279(247)271(231)303-295-239(215)240(216)296-304-272(232)280(248)336-344-312(264)320(288(256)287)376(375)400(415)384(344)392-360(336)352(304)368-328(296)327(295)367-351(303)359(335)391(383(343)399)419(427)407(367)408(368)420(392)427)109-113-163(165)117-121-169-155-189(441-145-107-95-83-71-59-47-35-23-11)177(159-185(169)437-141-103-91-79-67-55-43-31-19-7)129-133-429-417-403-379-323-291-259-211-199-193-200-212(211)260-268-252-228(200)236-220-205(193)219-235-227(199)251-267(259)315(323)347-339-283(251)275(235)307-299-243(219)244(220)300-308-276(236)284(252)340-348-316(268)324(292(260)291)380(379)404(417)388(348)396-364(340)356(308)372-332(300)331(299)371-355(307)363(339)395(387(347)403)423(429)411(371)412(372)424(396)429)125-126-174-154-180(432-136-98-86-74-62-50-38-26-14-2)172(152-182(174)434-138-100-88-76-64-52-40-28-16-4)124-120-166-148-162(112-116-168-150-188(440-144-106-94-82-70-58-46-34-22-10)176(158-184(168)436-140-102-90-78-66-54-42-30-18-6)128-132-428-416-401-377-321-289-257-209-197-192-198-210(209)258-266-250-226(198)234-218-204(192)217-233-225(197)249-265(257)313(321)345-337-281(249)273(233)305-297-241(217)242(218)298-306-274(234)282(250)338-346-314(266)322(290(258)289)378(377)402(416)386(346)394-362(338)354(306)370-330(298)329(297)369-353(305)361(337)393(385(345)401)421(428)409(369)410(370)422(394)428)110-114-164(166)118-122-170-156-190(442-146-108-96-84-72-60-48-36-24-12)178(160-186(170)438-142-104-92-80-68-56-44-32-20-8)130-134-430-418-405-381-325-293-261-213-201-194-202-214(213)262-270-254-230(202)238-222-206(194)221-237-229(201)253-269(261)317(325)349-341-285(253)277(237)309-301-245(221)246(222)302-310-278(238)286(254)342-350-318(270)326(294(262)293)382(381)406(418)390(350)398-366(342)358(310)374-334(302)333(301)373-357(309)365(341)397(389(349)405)425(430)413(373)414(374)426(398)430/h109-110,113-114,147-160,415-418H,13-108,135-146H2,1-12H3/t415-,416-,417-,418-,427+,428+,429+,430+
    Key: XMCLKYABXSBFLO-GAVGUPCASA-N
  • Nanocar core structure:InChI=1S/C310H34/c1(53-3-7-59(8-4-53)33-41-69-51-65(29-27-55-11-19-61(20-12-55)43-47-307-295-279-255-199-167-135-87-75-71-76-88(87)136-144-128-104(76)112-96-83(71)95-111-103(75)127-143(135)191(199)223-215-159(127)151(111)183-175-119(95)120(96)176-184-152(112)160(128)216-224-192(144)200(168(136)167)256(255)280(295)264(224)272-240(216)232(184)248-208(176)207(175)247-231(183)239(215)271(263(223)279)299(307)287(247)288(248)300(272)307)35-39-67(69)37-31-57-15-23-63(24-16-57)45-49-309-297-283-259-203-171-139-91-79-73-80-92(91)140-148-132-108(80)116-100-85(73)99-115-107(79)131-147(139)195(203)227-219-163(131)155(115)187-179-123(99)124(100)180-188-156(116)164(132)220-228-196(148)204(172(140)171)260(259)284(297)268(228)276-244(220)236(188)252-212(180)211(179)251-235(187)243(219)275(267(227)283)303(309)291(251)292(252)304(276)309)2-54-5-9-60(10-6-54)34-42-70-52-66(30-28-56-13-21-62(22-14-56)44-48-308-296-281-257-201-169-137-89-77-72-78-90(89)138-146-130-106(78)114-98-84(72)97-113-105(77)129-145(137)193(201)225-217-161(129)153(113)185-177-121(97)122(98)178-186-154(114)162(130)218-226-194(146)202(170(138)169)258(257)282(296)266(226)274-242(218)234(186)250-210(178)209(177)249-233(185)241(217)273(265(225)281)301(308)289(249)290(250)302(274)308)36-40-68(70)38-32-58-17-25-64(26-18-58)46-50-310-298-285-261-205-173-141-93-81-74-82-94(93)142-150-134-110(82)118-102-86(74)101-117-109(81)133-149(141)197(205)229-221-165(133)157(117)189-181-125(101)126(102)182-190-158(118)166(134)222-230-198(150)206(174(142)173)262(261)286(298)270(230)278-246(222)238(190)254-214(182)213(181)253-237(189)245(221)277(269(229)285)305(310)293(253)294(254)306(278)310/h3-26,35-36,39-40,51-52,295-298H/t295-,296-,297-,298-,307+,308+,309+,310+
    Key: WQLDMLHCQIDOPH-BTRKRKDISA-N
  • Nanocar with alkyl sidechains:CCCCCCCCCCOc1cc(c(cc1C#Cc2cc(ccc2C#Cc3cc(c(cc3OCCCCCCCCCC)C#CC45c6c7c8c9c1c2c3c%10c%11c%12c%13c3c1c1c8c3c6c6c4c4c8c%14c%15c%16c(c%11c%11c%10c%10c2c2c9c7c7c9c2c%10c2c%11c%16c%10c2c9c(c4c%10%14)C57)c2c%12c4c%13c1c3c1c4c(c2%15)c8c16)OCCCCCCCCCC)C#Cc1cc(c(cc1OCCCCCCCCCC)C#CC12c3c4c5c6c7c8c9c%10c%11c%12c%13c9c7c7c5c5c3c3c1c1c9c%14c%15c%16c(c%11c%11c%10c%10c8c8c6c4c4c6c8c%10c8c%11c%16c%10c8c6c(c1c%10%14)C24)c1c%12c2c%13c7c5c4c2c(c1%15)c9c43)OCCCCCCCCCC)OCCCCCCCCCC)C#Cc1cc(c(cc1OCCCCCCCCCC)C#Cc1cc(ccc1C#Cc1cc(c(cc1OCCCCCCCCCC)C#CC12c3c4c5c6c7c8c9c%10c%11c%12c%13c9c7c7c5c5c3c3c1c1c9c%14c%15c%16c(c%11c%11c%10c%10c8c8c6c4c4c6c8c%10c8c%11c%16c%10c8c6c(c1c%10%14)C24)c1c%12c2c%13c7c5c4c2c(c1%15)c9c43)OCCCCCCCCCC)C#Cc1cc(c(cc1OCCCCCCCCCC)C#CC12c3c4c5c6c7c8c9c%10c%11c%12c%13c9c7c7c5c5c3c3c1c1c9c%14c%15c%16c(c%11c%11c%10c%10c8c8c6c4c4c6c8c%10c8c%11c%16c%10c8c6c(c1c%10%14)C24)c1c%12c2c%13c7c5c4c2c(c1%15)c9c43)OCCCCCCCCCC)OCCCCCCCCCC
  • Nanocar core structure:c1cc(ccc1C#Cc2ccc(cc2)C#Cc3cc(ccc3C#Cc4ccc(cc4)C#CC56c7c8c9c1c2c3c4c%10c%11c%12c%13c4c2c2c9c4c7c7c5c5c9c%14c%15c%16c(c%11c%11c%10c%10c3c3c1c8c1c8c3c%10c3c%11c%16c%10c3c8c(c5c%10%14)C61)c1c%12c3c%13c2c4c2c3c(c1%15)c9c27)C#Cc1ccc(cc1)C#CC12c3c4c5c6c7c8c9c%10c%11c%12c%13c9c7c7c5c5c3c3c1c1c9c%14c%15c%16c(c%11c%11c%10c%10c8c8c6c4c4c6c8c%10c8c%11c%16c%10c8c6c(c1c%10%14)C24)c1c%12c2c%13c7c5c4c2c(c1%15)c9c43)C#Cc1cc(ccc1C#Cc1ccc(cc1)C#CC12c3c4c5c6c7c8c9c%10c%11c%12c%13c9c7c7c5c5c3c3c1c1c9c%14c%15c%16c(c%11c%11c%10c%10c8c8c6c4c4c6c8c%10c8c%11c%16c%10c8c6c(c1c%10%14)C24)c1c%12c2c%13c7c5c4c2c(c1%15)c9c43)C#Cc1ccc(cc1)C#CC12c3c4c5c6c7c8c9c%10c%11c%12c%13c9c7c7c5c5c3c3c1c1c9c%14c%15c%16c(c%11c%11c%10c%10c8c8c6c4c4c6c8c%10c8c%11c%16c%10c8c6c(c1c%10%14)C24)c1c%12c2c%13c7c5c4c2c(c1%15)c9c43
Properties
C430H274O12
Molar mass 5632.769
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

The nanocar is a molecule designed in 2005 at Rice University by a group headed by Professor James Tour. Despite the name, the original nanocar does not contain a molecular motor, hence, it is not really a car. Rather, it was designed to answer the question of how fullerenes move about on metal surfaces; specifically, whether they roll or slide (they roll).

Contents

The molecule consists of an H-shaped 'chassis' with fullerene groups attached at the four corners to act as wheels.

When dispersed on a gold surface, the molecules attach themselves to the surface via their fullerene groups and are detected via scanning tunneling microscopy. One can deduce their orientation as the frame length is a little shorter than its width.

Upon heating the surface to 200 °C the molecules move forward and back as they roll on their fullerene "wheels". The nanocar is able to roll about because the fullerene wheel is fitted to the alkyne "axle" through a carbon-carbon single bond. The hydrogen on the neighboring carbon is no great obstacle to free rotation. When the temperature is high enough, the four carbon-carbon bonds rotate and the car rolls about. Occasionally the direction of movement changes as the molecule pivots. The rolling action was confirmed by Professor Kevin Kelly, also at Rice, by pulling the molecule with the tip of the STM.

Independent early conceptual contribution

The concept of a nanocar built out of molecular "tinkertoys" was first hypothesized by M.T. Michalewicz at the Fifth Foresight Conference on Molecular Nanotechnology (November 1997). [2] Subsequently, an expanded version was published in Annals of Improbable Research. [3] These papers were supposed to be a not-so-serious contribution to a fundamental debate on the limits of bottom-up Drexlerian nanotechnology and conceptual limits of how far mechanistic analogies advanced by Eric Drexler could be carried out. The important feature of this nanocar concept was the fact that all molecular component tinkertoys were known and synthesized molecules (alas, some very exotic and only recently discovered, e.g. staffanes, and notably – ferric wheel, 1995), in contrast to some Drexlerian diamondoid structures that were only postulated and never synthesized; and the drive system that was embedded in a ferric wheel and driven by inhomogeneous or time-dependent magnetic field of a substrate – an "engine in a wheel" concept.

Nanodragster

Chemical structure of the nanodragster. The smaller wheels are p-carborane with methyl groups and the larger wheels are
.mw-parser-output .template-chem2-su{display:inline-block;font-size:80%;line-height:1;vertical-align:-0.35em}.mw-parser-output .template-chem2-su>span{display:block;text-align:left}.mw-parser-output sub.template-chem2-sub{font-size:80%;vertical-align:-0.35em}.mw-parser-output sup.template-chem2-sup{font-size:80%;vertical-align:0.65em}
C60 fullerene. Nanodragster2.png
Chemical structure of the nanodragster. The smaller wheels are p-carborane with methyl groups and the larger wheels are C60 fullerene.

The Nanodragster, dubbed the world's smallest hot rod, is a molecular nanocar. [1] [4] The design improves on previous nanocar designs and is a step towards creating molecular machines. The name comes from the nanocar's resemblance to a dragster, as its staggered wheel fitment has a shorter axle with smaller wheels in the front and a larger axle with larger wheels in the back.

The nanocar was developed at Rice University’s Richard E. Smalley Institute Nanoscale Science and Technology by the team of James Tour, Kevin Kelly and other colleagues involved in its research. [5] [6] The previous nanocar developed was 3 to 4 nanometers which was a little over[the width of?] a strand of DNA and was around 20,000 times thinner than a human hair. [7] These nanocars were built with carbon buckyballs as their four wheels, and the surface on which they were placed required a temperature of 400 °F (200 °C) to get it moving. On the other hand, a nanocar which utilized p-carborane wheels moves as if sliding on ice, rather than rolling. [8] Such observations led to the production of nanocars which had both wheel designs.

The nanodragster is 50,000 times thinner than a human hair and has a top speed of 0.014 millimeters per hour (0.0006 in/h or 3.89×10−9 m/s). [4] [9] [10] The rear wheels are spherical fullerene molecules, or buckyballs, composed of sixty carbon atoms each, which are attracted to a dragstrip that is made up of a very fine layer of gold. This design also enabled Tour’s team to operate the device at lower temperatures.

The nanodragster and other nano-machines are designed for use in transporting items. The technology can be used in manufacturing computer circuits and electronic components, or in conjunction with pharmaceuticals inside the human body. [11] Tour also speculated that the knowledge gained from the nanocar research would help build efficient catalytic systems in the future.

Electrically driven directional motion of a four-wheel molecule on a metal surface

Kudernac et al. described a specially designed molecule that has four motorized "wheels". By depositing the molecule on a copper surface and providing them with sufficient energy from electrons of a scanning tunnelling microscope they were able to drive some of the molecules in a specific direction, much like a car, being the first single molecule capable to continue moving in the same direction across a surface. Inelastic electron tunnelling induces conformational changes in the rotors and propels the molecule across a copper surface. By changing the direction of the rotary motion of individual motor units, the self-propelling molecular 'four-wheeler' structure can follow random or preferentially linear trajectories. This design provides a starting point for the exploration of more sophisticated molecular mechanical systems, perhaps with complete control over their direction of motion. [12] This electrically driven nanocar was built under supervision of University of Groningen chemist Bernard L. Feringa, who was awarded the Nobel Prize for Chemistry in 2016 for his pioneering work on nanomotors, together with Jean-Pierre Sauvage and J. Fraser Stoddart. [13]

Motor nanocar

A future nanocar with a synthetic molecular motor has been developed by Jean-Francois Morin et al. [14] It is fitted with carborane wheels and a light-powered helicene synthetic molecular motor. Although the motor moiety displayed unidirectional rotation in solution, light-driven motion on a surface has yet to be observed. Mobility in water and other liquids can be also realized by a molecular propeller in the future.

See also

Related Research Articles

<span class="mw-page-title-main">Fullerene</span> Allotrope of carbons

A fullerene is an allotrope of carbon whose molecules consist of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to seven atoms. The molecules may be hollow spheres, ellipsoids, tubes, or other shapes.

<span class="mw-page-title-main">Nanotechnology</span> Field of science involving control of matter on atomic and (supra)molecular scales

Nanotechnology was defined by the National Nanotechnology Initiative as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing properties of matter. The definition of nanotechnology is inclusive of all types of research and technologies that deal with these special properties. It is therefore common to see the plural form "nanotechnologies" as well as "nanoscale technologies" to refer to the broad range of research and applications whose common trait is size. An earlier description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology.

<span class="mw-page-title-main">Richard Smalley</span> American chemist (1943–2005)

Richard Errett Smalley was an American chemist who was the Gene and Norman Hackerman Professor of Chemistry, Physics, and Astronomy at Rice University. In 1996, along with Robert Curl, also a professor of chemistry at Rice, and Harold Kroto, a professor at the University of Sussex, he was awarded the Nobel Prize in Chemistry for the discovery of a new form of carbon, buckminsterfullerene, also known as buckyballs. He was an advocate of nanotechnology and its applications.

<span class="mw-page-title-main">Four-wheel drive</span> Type of drivetrain with four driven wheels

A four-wheel drive, also called 4×4 or 4WD, is a two-axled vehicle drivetrain capable of providing torque to all of its wheels simultaneously. It may be full-time or on-demand, and is typically linked via a transfer case providing an additional output drive shaft and, in many instances, additional gear ranges.

<span class="mw-page-title-main">Nanorobotics</span> Emerging technology field

Nanoid robotics, or for short, nanorobotics or nanobotics, is an emerging technology field creating machines or robots, which are called nanorobots or simply nanobots, whose components are at or near the scale of a nanometer. More specifically, nanorobotics refers to the nanotechnology engineering discipline of designing and building nanorobots with devices ranging in size from 0.1 to 10 micrometres and constructed of nanoscale or molecular components. The terms nanobot, nanoid, nanite, nanomachine and nanomite have also been used to describe such devices currently under research and development.

<span class="mw-page-title-main">Nanomotor</span> Molecular device capable of converting energy into movement

A nanomotor is a molecular or nanoscale device capable of converting energy into movement. It can typically generate forces on the order of piconewtons.

<span class="mw-page-title-main">Molecular machine</span> Molecular-scale artificial or biological device

Molecular machines are a class of molecules typically described as an assembly of a discrete number of molecular components intended to produce mechanical movements in response to specific stimuli, mimicking macromolecular devices such as switches and motors. Naturally occurring or biological molecular machines are responsible for vital living processes such as DNA replication and ATP synthesis. Kinesins and ribosomes are examples of molecular machines, and they often take the form of multi-protein complexes. For the last several decades, scientists have attempted, with varying degrees of success, to miniaturize machines found in the macroscopic world. The first example of an artificial molecular machine (AMM) was reported in 1994, featuring a rotaxane with a ring and two different possible binding sites. In 2016 the Nobel Prize in Chemistry was awarded to Jean-Pierre Sauvage, Sir J. Fraser Stoddart, and Bernard L. Feringa for the design and synthesis of molecular machines.

<span class="mw-page-title-main">James Tour</span> American scientist

James Mitchell Tour is an American chemist and nanotechnologist. He is a Professor of Chemistry, Professor of Materials Science and Nanoengineering at Rice University in Houston, Texas.

<span class="mw-page-title-main">Synthetic molecular motor</span> Man-made molecular machines

Synthetic molecular motors are molecular machines capable of continuous directional rotation under an energy input. Although the term "molecular motor" has traditionally referred to a naturally occurring protein that induces motion, some groups also use the term when referring to non-biological, non-peptide synthetic motors. Many chemists are pursuing the synthesis of such molecular motors.

ApNano Materials is a nanotechnology company, wholly owned and operated by Nanotech Industrial Solutions (NIS) with R&D lab, manufacturing, blending and packaging facilities in Avenel, New Jersey, United States, and Yavne, Israel. NIS is the only company in the world with an exclusive license to manufacture inorganic fullerene-like tungsten disulfide (IF-WS2) submicron (nanosized) spherical particles on a commercial scale with the patent from the Weizmann Institute. These inorganic fullerene-like tungsten disulfide-based nanomaterials opened up new possibilities for developing extreme performance industrial lubricants, coatings, and polymer composites.

The history of nanotechnology traces the development of the concepts and experimental work falling under the broad category of nanotechnology. Although nanotechnology is a relatively recent development in scientific research, the development of its central concepts happened over a longer period of time. The emergence of nanotechnology in the 1980s was caused by the convergence of experimental advances such as the invention of the scanning tunneling microscope in 1981 and the discovery of fullerenes in 1985, with the elucidation and popularization of a conceptual framework for the goals of nanotechnology beginning with the 1986 publication of the book Engines of Creation. The field was subject to growing public awareness and controversy in the early 2000s, with prominent debates about both its potential implications as well as the feasibility of the applications envisioned by advocates of molecular nanotechnology, and with governments moving to promote and fund research into nanotechnology. The early 2000s also saw the beginnings of commercial applications of nanotechnology, although these were limited to bulk applications of nanomaterials rather than the transformative applications envisioned by the field.

<span class="mw-page-title-main">Rear-engine design</span>

In automobile design, a rear-engine design layout places the engine at the rear of the vehicle. The center of gravity of the engine itself is behind the rear axle. This is not to be confused with the center of gravity of the whole vehicle, as an imbalance of such proportions would make it impossible to keep the front wheels on the ground.

<span class="mw-page-title-main">Carbon nanobud</span> Synthetic allotrope of carbon combining carbon nanotube and a fullerene

In nanotechnology, a carbon nanobud is a material that combines carbon nanotubes and spheroidal fullerenes, both allotropes of carbon, forming "buds" attached to the tubes. Carbon nanobuds were discovered and synthesized in 2006.

<span class="mw-page-title-main">Molecular propeller</span>

Molecular propeller is a molecule that can propel fluids when rotated, due to its special shape that is designed in analogy to macroscopic propellers: it has several molecular-scale blades attached at a certain pitch angle around the circumference of a shaft, aligned along the rotational axis.

The following outline is provided as an overview of and topical guide to nanotechnology:

The single-molecule electric motor is an electrically operated synthetic molecular motor made from a single butyl methyl sulphide molecule. The molecule is adsorbed onto a copper (111) single-crystal piece by chemisorption. The motor, the world's smallest electric motor, is just a nanometer across. It was developed by the Sykes group and scientists at the Tufts University School of Arts and Sciences and published online September 4, 2011.

<span class="mw-page-title-main">Ben Feringa</span> Dutch Nobel laureate in chemistry

Bernard Lucas Feringa is a Dutch synthetic organic chemist, specializing in molecular nanotechnology and homogeneous catalysis. He is the Jacobus van 't Hoff Distinguished Professor of Molecular Sciences, at the Stratingh Institute for Chemistry, University of Groningen, Netherlands, and an Academy Professor of the Royal Netherlands Academy of Arts and Sciences. He was awarded the 2016 Nobel Prize in Chemistry, together with Sir J. Fraser Stoddart and Jean-Pierre Sauvage, "for the design and synthesis of molecular machines".

Nanocar Race is an international scientific competition with the aim of testing the performance of getting a large molecule suspended over a solid surface to cover the largest distance with the use of a scanning tunneling microscope.

Nathalie Helene Katsonis is a Professor of Active Molecular Systems at the Stratingh Institute for Chemistry, University of Groningen. In 2016 she was awarded the Royal Netherlands Chemical Society Gold Medal.

This glossary of nanotechnology is a list of definitions of terms and concepts relevant to nanotechnology, its sub-disciplines, and related fields.

References

  1. 1 2 3 Shirai, Y.; et al. (2005). "Directional Control in Thermally Driven Single-Molecule Nanocars". Nano Lett. 5 (11): 2330–34. Bibcode:2005NanoL...5.2330S. doi:10.1021/nl051915k. PMID   16277478.
  2. M T Michalewicz Nano-cars: Feynman's dream fulfilled or the ultimate challenge to Automotive Industry. Publication abstract. The Fifth Foresight Conference on Molecular Nanotechnology, Palo Alto (1997 November 5–8)
  3. M.T. Michalewicz Nano-cars: Enabling Technology for building Buckyball Pyramids Archived 2018-06-19 at the Wayback Machine , Annals of Improbable Research, Vol. IV, No. 3 March/April 1998
  4. 1 2 Hadhazy, Adam (Jan 19, 2010). "World's tiniest hot rod spurs nanotechnologies". NBC News . Retrieved 20 January 2010.
  5. "Texas scientists develop 'nanodragster'". Nano Tech Now. Retrieved 2010-01-19.
  6. Shirai, Y.; et al. (2005). "Directional Control in Thermally Driven Single-Molecule Nanocars". Nano Lett. 5 (11): 2330–34. Bibcode:2005NanoL...5.2330S. doi:10.1021/nl051915k. PMID   16277478.
  7. "Previous Nanocar Specifications". The Future of Things. Archived from the original on 2007-07-14. Retrieved 2010-01-20.
  8. "World's Smallest Hot Rod Made Using Nanotechnology". Live Science . 19 January 2010.
  9. "'Nanodragster' Races Toward the Future of Molecular Machines". Science Daily. Retrieved 2010-01-19.
  10. "'Nanodragster' races toward the future of molecular machines". Nano Techwire. Archived from the original on 2011-07-14. Retrieved 2010-01-20.
  11. "New Model Nanocar on the Showroom Floor". The Future of Things. Archived from the original on 2007-07-14. Retrieved 2010-01-20.
  12. Kudernac, Tibor; Ruangsupapichat, Nopporn; Parschau, Manfred; MacIá, Beatriz; Katsonis, Nathalie; Harutyunyan, Syuzanna R.; Ernst, Karl-Heinz; Feringa, Ben L. (2011). "Electrically driven directional motion of a four-wheeled molecule on a metal surface". Nature. 479 (7372): 208–11. Bibcode:2011Natur.479..208K. doi:10.1038/nature10587. PMID   22071765. S2CID   6175720.
  13. The Nobel Prize in Chemistry 2016 was awarded jointly to Jean-Pierre Sauvage, Sir J. Fraser Stoddart and Bernard L. Feringa "for the design and synthesis of molecular machines".
  14. Morin, Jean-François; Shirai, Yasuhiro; Tour, James M. (2006). "En route to a motorised nanocar". Org. Lett. 8 (8): 1713–16. doi:10.1021/ol060445d. PMID   16597148.