Neurolenin B

Last updated
Neurolenin B
Neurolenin B.svg
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
PubChem CID
  • InChI=1S/C22H30O8/c1-11(2)9-17(25)30-19-18-13(4)21(26)29-15(18)10-12(3)7-8-16(24)22(6,27)20(19)28-14(5)23/h7-8,11-12,15,18-20,27H,4,9-10H2,1-3,5-6H3/b8-7-/t12-,15+,18-,19-,20+,22+/m0/s1
    Key: UVRIFAYGSSDVER-MBZNIOTRSA-N
  • C[C@@H]/1C[C@@H]2[C@@H]([C@@H]([C@H]([C@](C(=O)/C=C1)(C)O)OC(=O)C)OC(=O)CC(C)C)C(=C)C(=O)O2
Properties
C22H30O8
Molar mass 422.474 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Neurolenin B is an antimalarial chemical isolated from Neurolaena lobata and Austroeupatorium inulifolium . [1] [2]

Related Research Articles

<span class="mw-page-title-main">Malaria</span> Mosquito-borne infectious disease

Malaria is a mosquito-borne infectious disease that affects vertebrates. Human malaria causes symptoms that typically include fever, fatigue, vomiting, and headaches. In severe cases, it can cause jaundice, seizures, coma, or death. Symptoms usually begin 10 to 15 days after being bitten by an infected Anopheles mosquito. If not properly treated, people may have recurrences of the disease months later. In those who have recently survived an infection, reinfection usually causes milder symptoms. This partial resistance disappears over months to years if the person has no continuing exposure to malaria.

Antimalarial medications or simply antimalarials are a type of antiparasitic chemical agent, often naturally derived, that can be used to treat or to prevent malaria, in the latter case, most often aiming at two susceptible target groups, young children and pregnant women. As of 2018, modern treatments, including for severe malaria, continued to depend on therapies deriving historically from quinine and artesunate, both parenteral (injectable) drugs, expanding from there into the many classes of available modern drugs. Incidence and distribution of the disease is expected to remain high, globally, for many years to come; moreover, known antimalarial drugs have repeatedly been observed to elicit resistance in the malaria parasite—including for combination therapies featuring artemisinin, a drug of last resort, where resistance has now been observed in Southeast Asia. As such, the needs for new antimalarial agents and new strategies of treatment remain important priorities in tropical medicine. As well, despite very positive outcomes from many modern treatments, serious side effects can impact some individuals taking standard doses.

<i>Artemisia annua</i> Herb known as sweet wormwood used to treat malaria

Artemisia annua, also known as sweet wormwood, sweet annie, sweet sagewort, annual mugwort or annual wormwood, is a common type of wormwood native to temperate Asia, but naturalized in many countries including scattered parts of North America.

<span class="mw-page-title-main">Artemisinin</span> Group of drugs used against malaria

Artemisinin and its semisynthetic derivatives are a group of drugs used in the treatment of malaria due to Plasmodium falciparum. It was discovered in 1972 by Tu Youyou, who shared the 2015 Nobel Prize in Physiology or Medicine for her discovery. Artemisinin-based combination therapies (ACTs) are now standard treatment worldwide for P. falciparum malaria as well as malaria due to other species of Plasmodium. Artemisinin is extracted from the plant Artemisia annua a herb employed in Chinese traditional medicine. A precursor compound can be produced using a genetically engineered yeast, which is much more efficient than using the plant.

<span class="mw-page-title-main">Chloroquine</span> Medication used to treat malaria

Chloroquine is a medication primarily used to prevent and treat malaria in areas where malaria remains sensitive to its effects. Certain types of malaria, resistant strains, and complicated cases typically require different or additional medication. Chloroquine is also occasionally used for amebiasis that is occurring outside the intestines, rheumatoid arthritis, and lupus erythematosus. While it has not been formally studied in pregnancy, it appears safe. It was studied to treat COVID-19 early in the pandemic, but these studies were largely halted in the summer of 2020, and the NIH does not recommend its use for this purpose. It is taken by mouth.

<span class="mw-page-title-main">Fosmidomycin</span> Chemical compound

Fosmidomycin is an antibiotic that was originally isolated from culture broths of bacteria of the genus Streptomyces. It specifically inhibits DXP reductoisomerase, a key enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. It is a structural analogue of 2-C-methyl-D-erythrose 4-phosphate. It inhibits the E. coli enzyme with a KI value of 38 nM (4), MTB at 80 nM, and the Francisella enzyme at 99 nM. Several mutations in the E. coli DXP reductoisomerase were found to confer resistance to fosmidomycin.

<span class="mw-page-title-main">Hydroxychloroquine</span> Antimalarial medication

Hydroxychloroquine, sold under the brand name Plaquenil among others, is a medication used to prevent and treat malaria in areas where malaria remains sensitive to chloroquine. Other uses include treatment of rheumatoid arthritis, lupus, and porphyria cutanea tarda. It is taken by mouth, often in the form of hydroxychloroquine sulfate.

<span class="mw-page-title-main">Lactucopicrin</span> Chemical compound

Lactucopicrin (Intybin) is a bitter substance that has a sedative and analgesic effect, acting on the central nervous system. It is a sesquiterpene lactone, and is a component of lactucarium, derived from the plant Lactuca virosa, as well as being found in some related plants such as Cichorium intybus. It is also found in dandelion coffee.

<span class="mw-page-title-main">Dihydroartemisinin</span> Drug used to treat malaria

Dihydroartemisinin is a drug used to treat malaria. Dihydroartemisinin is the active metabolite of all artemisinin compounds and is also available as a drug in itself. It is a semi-synthetic derivative of artemisinin and is widely used as an intermediate in the preparation of other artemisinin-derived antimalarial drugs. It is sold commercially in combination with piperaquine and has been shown to be equivalent to artemether/lumefantrine.

<span class="mw-page-title-main">Artelinic acid</span> Chemical compound

Artelinic acid is an experimental drug that is being investigated as a treatment for malaria. It is a semi-synthetic derivative of the natural compound artemisinin. Artelinic acid has a lower rate of neurotoxicity than the related artemisinin derivatives arteether and artemether, but is three times more toxic than artesunate. At present, artelinic acid seems unlikely to enter routine clinical use, because it offers no clear benefits over the artemesinins already available. Artelinic acid has not yet been evaluated for use in humans.

<span class="mw-page-title-main">Cycloguanil</span> Chemical compound

Cycloguanil is a dihydrofolate reductase inhibitor, and is a metabolite of the antimalarial drug proguanil; its formation in vivo has been thought to be primarily responsible for the antimalarial activity of proguanil. However, more recent work has indicated that, while proguanil is synergistic with the drug atovaquone, cycloguanil is in fact antagonistic to the effects of atovaquone, suggesting that, unlike cycloguanil, proguanil may have an alternative mechanism of antimalarial action besides dihydrofolate reductase inhibition.

<span class="mw-page-title-main">Akuammine</span> Chemical compound

Akuammine (vincamajoridine) is an indole alkaloid. It is the most abundant alkaloid found in the seeds from the tree Picralima nitida, commonly known as akuamma, comprising 0.56% of the dried powder. It has also been isolated from Vinca major. Akuammine is structurally related to yohimbine, mitragynine and more distantly Voacangine, all of which are alkaloid plant products with pharmacological properties.

<i>Uvaria chamae</i> Species of shrub

Uvaria chamae, commonly known as finger root or bush banana is a climbing large shrub or small tree native to tropical West and Central Africa where it grows in wet and dry forests and coastal scrublands. The common name refers to the fruit growing in its small bunches; the fruit is edible and widely eaten. U. chamae is a medicinal plant used throughout its range to treat fevers and has antibiotic properties. An extract of Uvaria chamae, administered orally at 300–900 mg/kg/day showed significant antimalarial activity against both early and established infections.

<span class="mw-page-title-main">Dihydrofolate reductase inhibitor</span> Cellular enzyme inhibitor

A dihydrofolate reductase inhibitor is a molecule that inhibits the function of dihydrofolate reductase, and is a type of antifolate.

<span class="mw-page-title-main">Pyronaridine</span> Chemical compound

Pyronaridine is an antimalarial drug. It was first made in 1970 and has been in clinical use in China since the 1980s.

<span class="mw-page-title-main">Arterolane</span> Chemical compound

Arterolane, also known as OZ277 or RBx 11160, is a substance that was tested for antimalarial activity by Ranbaxy Laboratories. It was discovered by US and European scientists who were coordinated by the Medicines for Malaria Venture (MMV). Its molecular structure is uncommon for pharmacological compounds in that it has both an ozonide (trioxolane) group and an adamantane substituent.

<span class="mw-page-title-main">Amentoflavone</span> Chemical compound

Amentoflavone is a biflavonoid constituent of a number of plants including Ginkgo biloba, Chamaecyparis obtusa (hinoki), Biophytum sensitivum, Selaginella tamariscina, Hypericum perforatum and Xerophyta plicata.

<span class="mw-page-title-main">Licochalcone A</span> Chemical compound

Licochalcone A is a chalconoid, a type of natural phenol. It can be isolated from the root of Glycyrrhiza glabra (liquorice) or Glycyrrhiza inflata. It shows antimalarial, anticancer, antibacterial and antiviral properties in vitro.

<span class="mw-page-title-main">Ganaplacide</span> Chemical compound

Ganaplacide is a drug in development by Novartis for the purpose of treating malaria. It belongs to the class of the imidazolopiperazines. It has shown activity against the Plasmodium falciparum and Plasmodium vivax forms of the malaria parasite.

<span class="mw-page-title-main">David A. Fidock</span>

David A. Fidock, is the CS Hamish Young Professor of Microbiology and Immunology and Professor of Medical Sciences at Columbia University Irving Medical Center in Manhattan.

References

  1. PubChem. "Neurolenin B". pubchem.ncbi.nlm.nih.gov. Retrieved 2023-10-25.
  2. Blair, S.; Mesa, J.; Correa, A.; Carmona-Fonseca, J.; Granados, H.; Sáez, J. (2002). "Antimalarial activity of neurolenin B and derivates of Eupatorium inulaefolium (Asteraceae)". Die Pharmazie. 57 (6): 413–415. PMID   12116880.