Nicole King

Last updated

Nicole King
Born1970
NationalityAmerican
Alma mater Indiana University Bloomington;
Harvard University
Known for choanoflagellates
Awards MacArthur Fellowship
Scientific career
FieldsBiology
Institutions University of California, Berkeley
Doctoral advisor Richard Losick

Nicole King (born 1970) is an American biologist and faculty member at the University of California, Berkeley in molecular and cell biology and integrative biology. [1] She was awarded a MacArthur Fellowship in 2005. [2] She has been an investigator with the Howard Hughes Medical Institute (HHMI) since 2013.

Contents

King studies the evolution of multicellularity and choanoflagellates. The goal of her work is to reconstruct how multicellular animals evolved from single-cell organisms.

Professional contributions

King identified choanoflagellates as key organisms to answer questions about the origin of multicellularity. Prior to her work, it was unclear whether choanoflagellates or fungi were the closest outgroup to multicellular animals (also called "metazoans"). King's comparative genomics work in collaboration with Sean Carroll helped to elucidate the evolutionary "tree of life." In addition, work by King and colleagues showed that choanoflagellates possess several protein-coding genes that are highly related to protein-coding genes in animals at the base of the metazoan tree, such as sponges, cnidarians, and ctenophores.

More recent work by King demonstrates that molecules thought to underpin the transition to multicellarity also exist in choanoflagellates and therefore were present in the single-celled and colonial ancestors of animals. For example, one of the most abundant and important cell adhesion molecules in the animal kingdom, cadherin, exists in choanoflagellates. In animals, cadherins are required to keep cells attached to their neighbors, so it was a surprising to discover that cadherins predate the evolution of animals. In addition, King found that choanoflagellates possess genes that animal cells use to "talk" or signal to one another, such as Receptor tyrosine kinase.

King continues her studies on choanoflagellates and multicellularity as an associate professor at the University of California, Berkeley. King received her B.S. from Indiana University Bloomington in 1992, in the lab of Thom Kaufman, working on the genetic workhorse, the fruitfly, also known as Drosophila melanogaster . She did her graduate work at Harvard University (A.M., 1996, and PhD, 1999), studying the spore formation in Bacillus subtilis. After completing a postdoctoral fellowship at the University of Wisconsin–Madison in 2003, she accepted the position of assistant professor of genetics and development at the University of California, Berkeley.

King's lab has developed and maintained ChoanoBase, a genetic library about choanaflagellates.

Awards and recognitions

Nicole King received the MacArthur Foundation's "genius" award (2005).

She received the Pew Scholars Program in the Biomedical Sciences (2004).

King also received an honorary Doctor of Science degree from Lehigh University on 18 May 2015, at the commencement ceremony. [3]

In 2022 King was elected to the National Academy of Sciences. [4]

Related Research Articles

Morphogenesis is the biological process that causes a cell, tissue or organism to develop its shape. It is one of three fundamental aspects of developmental biology along with the control of tissue growth and patterning of cellular differentiation.

<span class="mw-page-title-main">Choanoflagellate</span> Group of eukaryotes considered the closest living relatives of animals

The choanoflagellates are a group of free-living unicellular and colonial flagellate eukaryotes considered to be the closest living relatives of the animals. Choanoflagellates are collared flagellates, having a funnel shaped collar of interconnected microvilli at the base of a flagellum. Choanoflagellates are capable of both asexual and sexual reproduction. They have a distinctive cell morphology characterized by an ovoid or spherical cell body 3–10 μm in diameter with a single apical flagellum surrounded by a collar of 30–40 microvilli. Movement of the flagellum creates water currents that can propel free-swimming choanoflagellates through the water column and trap bacteria and detritus against the collar of microvilli, where these foodstuffs are engulfed. This feeding provides a critical link within the global carbon cycle, linking trophic levels. In addition to their critical ecological roles, choanoflagellates are of particular interest to evolutionary biologists studying the origins of multicellularity in animals. As the closest living relatives of animals, choanoflagellates serve as a useful model for reconstructions of the last unicellular ancestor of animals.

<span class="mw-page-title-main">Multicellular organism</span> Organism that consists of more than one cell

A multicellular organism is an organism that consists of more than one cell, in contrast to unicellular organism. All species of animals, land plants and most fungi are multicellular, as are many algae, whereas a few organisms are partially uni- and partially multicellular, like slime molds and social amoebae such as the genus Dictyostelium.

<span class="mw-page-title-main">Cell adhesion</span> Process of cell attachment

Cell adhesion is the process by which cells interact and attach to neighbouring cells through specialised molecules of the cell surface. This process can occur either through direct contact between cell surfaces such as cell junctions or indirect interaction, where cells attach to surrounding extracellular matrix, a gel-like structure containing molecules released by cells into spaces between them. Cells adhesion occurs from the interactions between cell-adhesion molecules (CAMs), transmembrane proteins located on the cell surface. Cell adhesion links cells in different ways and can be involved in signal transduction for cells to detect and respond to changes in the surroundings. Other cellular processes regulated by cell adhesion include cell migration and tissue development in multicellular organisms. Alterations in cell adhesion can disrupt important cellular processes and lead to a variety of diseases, including cancer and arthritis. Cell adhesion is also essential for infectious organisms, such as bacteria or viruses, to cause diseases.

<span class="mw-page-title-main">Cadherin</span> Calcium-dependent cell adhesion molecule

Cadherins (named for "calcium-dependent adhesion") are cell adhesion molecules important in forming adherens junctions that let cells adhere to each other. Cadherins are a class of type-1 transmembrane proteins, and they depend on calcium (Ca2+) ions to function, hence their name. Cell-cell adhesion is mediated by extracellular cadherin domains, whereas the intracellular cytoplasmic tail associates with numerous adaptors and signaling proteins, collectively referred to as the cadherin adhesome.

Cell adhesion molecules (CAMs) are a subset of cell surface proteins that are involved in the binding of cells with other cells or with the extracellular matrix (ECM), in a process called cell adhesion. In essence, CAMs help cells stick to each other and to their surroundings. CAMs are crucial components in maintaining tissue structure and function. In fully developed animals, these molecules play an integral role in generating force and movement and consequently ensuring that organs are able to execute their functions normally. In addition to serving as "molecular glue", CAMs play important roles in the cellular mechanisms of growth, contact inhibition, and apoptosis. Aberrant expression of CAMs may result in a wide range of pathologies, ranging from frostbite to cancer.

<span class="mw-page-title-main">Cell junction</span> Multiprotein complex that forms a point of contact or adhesion in animal cells

Cell junctions or junctional complexes are a class of cellular structures consisting of multiprotein complexes that provide contact or adhesion between neighboring cells or between a cell and the extracellular matrix in animals. They also maintain the paracellular barrier of epithelia and control paracellular transport. Cell junctions are especially abundant in epithelial tissues. Combined with cell adhesion molecules and extracellular matrix, cell junctions help hold animal cells together.

<span class="mw-page-title-main">Catenin</span> Type of protein

Catenins are a family of proteins found in complexes with cadherin cell adhesion molecules of animal cells. The first two catenins that were identified became known as α-catenin and β-catenin. α-Catenin can bind to β-catenin and can also bind filamentous actin (F-actin). β-Catenin binds directly to the cytoplasmic tail of classical cadherins. Additional catenins such as γ-catenin and δ-catenin have been identified. The name "catenin" was originally selected because it was suspected that catenins might link cadherins to the cytoskeleton.

α-Catenin Primary protein link between cadherins and the actin cytoskeleton

α-Catenin (alpha-catenin) functions as the primary protein link between cadherins and the actin cytoskeleton. It has been reported that the actin binding proteins vinculin and α-actinin can bind to alpha-catenin. It has been suggested that alpha-catenin does not bind with high affinity to both actin filaments and the E-cadherin-beta-catenin complex at the same time. It has been observed that when α-catenin is not in a molecular complex with β-catenin, it dimerizes and functions to regulate actin filament assembly, possibly by competing with Arp2/3 protein. α-Catenin exhibits significant protein dynamics. However, a protein complex including a cadherin, actin, β-catenin and α-catenin has not been isolated.

<span class="mw-page-title-main">T-cadherin</span> GPI-anchored signaling protein

T-cadherin, also known as cadherin 13, H-cadherin (heart), and CDH13, is a unique member of the cadherin superfamily of proteins because it lacks the transmembrane and cytoplasmic domains common to all other cadherins and is instead anchored to the cell's plasma membrane by the GPI anchor.

<span class="mw-page-title-main">CDH3 (gene)</span> Protein-coding gene in the species Homo sapiens

Cadherin-3, also known as P-Cadherin, is a protein that in humans is encoded by the CDH3 gene.

Alice Yen-Ping Ting is Taiwanese-born American chemist. She is a professor of genetics, of biology, and by courtesy, of chemistry at Stanford University. She is also a Chan Zuckerberg Biohub investigator and a member of the National Academy of Sciences.

The Urmetazoan is the hypothetical last common ancestor of all animals, or metazoans. It is universally accepted to be a multicellular heterotroph — with the novelties of a germline and oogamy, an extracellular matrix (ECM) and basement membrane, cell-cell and cell-ECM adhesions and signaling pathways, collagen IV and fibrillar collagen, different cell types, spatial regulation and a complex developmental plan, and relegated unicellular stages.

<span class="mw-page-title-main">Holozoa</span> Clade containing animals and some protists

Holozoa is a clade of organisms that includes animals and their closest single-celled relatives, but excludes fungi and all other organisms. Together they amount to more than 1.5 million species of purely heterotrophic organisms, including around 300 unicellular species. It consists of various subgroups, namely Metazoa and the protists Choanoflagellata, Filasterea, Pluriformea and Ichthyosporea. Along with fungi and some other groups, Holozoa is part of the Opisthokonta, a supergroup of eukaryotes. Choanofila was previously used as the name for a group similar in composition to Holozoa, but its usage is discouraged now because it excludes animals and is therefore paraphyletic.

The evolution of nervous systems dates back to the first development of nervous systems in animals. Neurons developed as specialized electrical signaling cells in multicellular animals, adapting the mechanism of action potentials present in motile single-celled and colonial eukaryotes. Primitive systems, like those found in protists, use chemical signalling for movement and sensitivity; data suggests these were precursors to modern neural cell types and their synapses. When some animals started living a mobile lifestyle and eating larger food particles externally, they developed ciliated epithelia, contractile muscles and coordinating & sensitive neurons for it in their outer layer.

<span class="mw-page-title-main">Masatoshi Takeichi</span> Japanese biologist

Masatoshi Takeichi is a Japanese cell biologist known for his identification of the cadherin class of adhesion molecules, which plays important roles in the construction of tissues. He shared the 2005 Japan Prize with Erkki Ruoslahti for "fundamental contribution in elucidating the molecular mechanisms of cell adhesion".

<span class="mw-page-title-main">Precambrian body plans</span> Structure and development of early multicellular organisms

Until the late 1950s, the Precambrian was not believed to have hosted multicellular organisms. However, with radiometric dating techniques, it has been found that fossils initially found in the Ediacara Hills in Southern Australia date back to the late Precambrian. These fossils are body impressions of organisms shaped like disks, fronds and some with ribbon patterns that were most likely tentacles.

The term Adhesome was first used by Richard Hynes to describe the complement of cell-cell and cell-matrix adhesion receptors in an organism and later expanded by Benny Geiger and co-workers to include the entire network of structural and signaling proteins involved in regulating cell-matrix adhesion.

<span class="mw-page-title-main">Choanozoa</span> Clade of opisthokont eukaryotes consisting of the choanoflagellates and the animals

Choanozoa is a clade of opisthokont eukaryotes consisting of the choanoflagellates (Choanoflagellatea) and the animals. The sister-group relationship between the choanoflagellates and animals has important implications for the origin of the animals. The clade was identified in 2015 by Graham Budd and Sören Jensen, who used the name Apoikozoa. The 2018 revision of the classification first proposed by the International Society of Protistologists in 2012 recommends the use of the name Choanozoa.

<i>Salpingoeca rosetta</i> Species of eukaryote

Salpingoeca rosetta is a species of Choanoflagellates in the family Salpingoecidae. It is a rare marine eukaryote consisting of a number of cells embedded in a jelly-like matrix. This organism demonstrates a very primitive level of cell differentiation and specialization. This is seen with flagellated cells and their collar structures that move the cell colony through the water.
Similar low level cellular differentiation and specification can also be seen in sponges. They also have collar cells and amoeboid cells arranged in a gelatinous matrix.
Unlike S. rosetta, sponges also have other cell-types that can perform different functions. Also, the collar cells of sponges beat within canals in the sponge body, whereas Salpingoeca rosetta's collar cells reside on the inside and it lacks internal canals. Despite these minor differences, there is strong evidence that Proterospongia and Metazoa are highly related.

References

Notes

  1. "Faculty Research Page". berkeley.edu.
  2. "MacArthur Profile". macfound.org. Archived from the original on 13 November 2006. Retrieved 24 October 2006.
  3. "Honorary degree recipients named". lehigh.edu. 23 March 2015.
  4. "2022 NAS Election". www.nasonline.org. Retrieved 15 May 2022.