Norman L. Biggs

Last updated

Norman Linstead Biggs (born 2 January 1941) is a leading British mathematician focusing on discrete mathematics and in particular algebraic combinatorics. [1]

Contents

Education

Biggs was educated at Harrow County Grammar School and then studied mathematics at Selwyn College, Cambridge. In 1962, Biggs gained first-class honours in his third year of the university's undergraduate degree in mathematics. [2]

Career

He was a lecturer at University of Southampton, lecturer then reader at Royal Holloway, University of London, and Professor of Mathematics at the London School of Economics. He has been on the editorial board of a number of journals, including the Journal of Algebraic Combinatorics . He has been a member of the Council of the London Mathematical Society.

He has written 12 books and over 100 papers on mathematical topics, many of them in algebraic combinatorics and its applications. He became Emeritus Professor in 2006 and continues to teach History of Mathematics in Finance and Economics for undergraduates. He is also vice-president of the British Society for the History of Mathematics.

Family

Biggs married Christine Mary Farmer in 1975 and has one daughter Clare Juliet born in 1980.

Interests and Hobbies

Biggs' interests include computational learning theory, the history of mathematics and historical metrology. Since 2006, he has been an emeritus professor at the London School of Economics.

Biggs hobbies consist of writing about the history of weights and scales. He currently holds the position of Chair of the International Society of Antique Scale Collectors (Europe), and a member of the British Numismatic Society.

Work

Mathematics

In 2002, Biggs wrote the second edition of Discrete Mathematics breaking down a wide range of topics into a clear and organised style. Biggs organised the book into four major sections; The Language of Mathematics, Techniques, Algorithms and Graphs, and Algebraic Methods. This book was an accumulation of Discrete Mathematics, first edition, textbook published in 1985 which dealt with calculations involving a finite number of steps rather than limiting processes. The second edition added nine new introductory chapters; Fundamental language of mathematicians, statements and proofs, the logical framework, sets and functions, and number system. This book stresses the significance of simple logical reasoning, shown by the exercises and examples given in the book. Each chapter contains modelled solutions, examples, exercises including hints and answers. [3]

Algebraic Graph Theory

In 1974, Biggs published Algebraic Graph Theory which articulates properties of graphs in algebraic terms, then works out theorems regarding them. In the first section, he tackles the applications of linear algebra and matrix theory; algebraic constructions such as adjacency matrix and the incidence matrix and their applications are discussed in depth. Next, there is and wide-ranging description of the theory of chromatic polynomials. The last section discusses symmetry and regularity properties. Biggs makes important connections with other branches of algebraic combinatorics and group theory. [4]

Computational Learning Theory

In 1997, N. Biggs and M. Anthony wrote a book titled Computational Learning Theory: an Introduction. Both Biggs and Anthony focused on the necessary background material from logic, probability, and complex theory. This book is an introduction to computational learning.

History of Mathematics

Biggs contributed to thirteen journals and books developing topics such as the four-colour conjecture, the roots/history of combinatorics, calculus, Topology on the 19th century, and mathematicians. [5] In addition, Biggs examined the ideas of William Ludlam, Thomas Harriot, John Arbuthnot, and Leonhard Euler. [6]

Chip-Firing Game

The chip-firing game has been around for less than 20 years. It has become an important part of the study of structural combinatorics. The set of configurations that are stable and recurrent for this game can be given the structure of an abelian group. In addition, the order of the group is equal to the tree number of the graph. [7] [8]

Publications

Summary of Biggs' published Books on Mathematics

Summary of Biggs' latest published Papers on Mathematics

2000

2001

2002

2004

2005

2007

2008

2009

2010

2011

For other published work on the history of mathematics, please see. [11]

See also

Related Research Articles

Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science.

<span class="mw-page-title-main">Discrete mathematics</span> Study of discrete mathematical structures

Discrete mathematics is the study of mathematical structures that can be considered "discrete" rather than "continuous". Objects studied in discrete mathematics include integers, graphs, and statements in logic. By contrast, discrete mathematics excludes topics in "continuous mathematics" such as real numbers, calculus or Euclidean geometry. Discrete objects can often be enumerated by integers; more formally, discrete mathematics has been characterized as the branch of mathematics dealing with countable sets. However, there is no exact definition of the term "discrete mathematics".

Combinatorics is a branch of mathematics concerning the study of finite or countable discrete structures.

<span class="mw-page-title-main">Discrete geometry</span> Branch of geometry that studies combinatorial properties and constructive methods

Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object.

<span class="mw-page-title-main">Béla Bollobás</span> Hungarian mathematician

Béla Bollobás FRS is a Hungarian-born British mathematician who has worked in various areas of mathematics, including functional analysis, combinatorics, graph theory, and percolation. He was strongly influenced by Paul Erdős since the age of 14.

The Fulkerson Prize for outstanding papers in the area of discrete mathematics is sponsored jointly by the Mathematical Optimization Society (MOS) and the American Mathematical Society (AMS). Up to three awards of $1,500 each are presented at each (triennial) International Symposium of the MOS. Originally, the prizes were paid out of a memorial fund administered by the AMS that was established by friends of the late Delbert Ray Fulkerson to encourage mathematical excellence in the fields of research exemplified by his work. The prizes are now funded by an endowment administered by MPS.

<span class="mw-page-title-main">Chromatic polynomial</span> Function in algebraic graph theory

The chromatic polynomial is a graph polynomial studied in algebraic graph theory, a branch of mathematics. It counts the number of graph colorings as a function of the number of colors and was originally defined by George David Birkhoff to study the four color problem. It was generalised to the Tutte polynomial by Hassler Whitney and W. T. Tutte, linking it to the Potts model of statistical physics.

<span class="mw-page-title-main">Algebraic graph theory</span> Branch of mathematics

Algebraic graph theory is a branch of mathematics in which algebraic methods are applied to problems about graphs. This is in contrast to geometric, combinatoric, or algorithmic approaches. There are three main branches of algebraic graph theory, involving the use of linear algebra, the use of group theory, and the study of graph invariants.

<span class="mw-page-title-main">Herbert Wilf</span> American mathematician

Herbert Saul Wilf was a mathematician, specializing in combinatorics and graph theory. He was the Thomas A. Scott Professor of Mathematics in Combinatorial Analysis and Computing at the University of Pennsylvania. He wrote numerous books and research papers. Together with Neil Calkin he founded The Electronic Journal of Combinatorics in 1994 and was its editor-in-chief until 2001.

<span class="mw-page-title-main">Tutte polynomial</span> Algebraic encoding of graph connectivity

The Tutte polynomial, also called the dichromate or the Tutte–Whitney polynomial, is a graph polynomial. It is a polynomial in two variables which plays an important role in graph theory. It is defined for every undirected graph and contains information about how the graph is connected. It is denoted by .

<span class="mw-page-title-main">Distance-transitive graph</span> Graph where any two nodes of equal distance are isomorphic

In the mathematical field of graph theory, a distance-transitive graph is a graph such that, given any two vertices v and w at any distance i, and any other two vertices x and y at the same distance, there is an automorphism of the graph that carries v to x and w to y. Distance-transitive graphs were first defined in 1971 by Norman L. Biggs and D. H. Smith.

<span class="mw-page-title-main">J. H. van Lint</span>

Jacobus Hendricus ("Jack") van Lint was a Dutch mathematician, professor at the Eindhoven University of Technology, of which he was rector magnificus from 1991 till 1996.

Ronald Cedric Read was a British mathematician, latterly a professor emeritus of mathematics at the University of Waterloo, Canada. He published many books and papers, primarily on enumeration of graphs, graph isomorphism, chromatic polynomials, and particularly, the use of computers in graph-theoretical research. A majority of his later work was done in Waterloo. Read received his Ph.D. (1959) in graph theory from the University of London.

<span class="mw-page-title-main">H. J. Ryser</span> American mathematician

Herbert John Ryser was a professor of mathematics, widely regarded as one of the major figures in combinatorics in the 20th century. He is the namesake of the Bruck–Ryser–Chowla theorem, Ryser's formula for the computation of the permanent of a matrix, and Ryser's conjecture.

<i>Discrete Mathematics</i> (journal) Academic journal

Discrete Mathematics is a biweekly peer-reviewed scientific journal in the broad area of discrete mathematics, combinatorics, graph theory, and their applications. It was established in 1971 and is published by North-Holland Publishing Company. It publishes both short notes, full length contributions, as well as survey articles. In addition, the journal publishes a number of special issues each year dedicated to a particular topic. Although originally it published articles in French and German, it now allows only English language articles. The editor-in-chief is Douglas West.

Combinatorial physics or physical combinatorics is the area of interaction between physics and combinatorics.

Mathematics is a broad subject that is commonly divided in many areas that may be defined by their objects of study, by the used methods, or by both. For example, analytic number theory is a subarea of number theory devoted to the use of methods of analysis for the study of natural numbers.

<span class="mw-page-title-main">David Wood (mathematician)</span>

David Ronald Wood is a Professor in the School of Mathematics at Monash University in Melbourne, Australia. His research area is discrete mathematics and theoretical computer science, especially structural graph theory, extremal graph theory, geometric graph theory, graph colouring, graph drawing, and combinatorial geometry.

Combinatorics: The Rota Way is a mathematics textbook on algebraic combinatorics, based on the lectures and lecture notes of Gian-Carlo Rota in his courses at the Massachusetts Institute of Technology. It was put into book form by Joseph P. S. Kung and Catherine Yan, two of Rota's students, and published in 2009 by the Cambridge University Press in their Cambridge Mathematical Library book series, listing Kung, Rota, and Yan as its authors. The Basic Library List Committee of the Mathematical Association of America has suggested its inclusion in undergraduate mathematics libraries.

References

  1. Norman L. Biggs at DBLP Bibliography Server OOjs UI icon edit-ltr-progressive.svg .
  2. "Norman Linstead Biggs". UK: London School of Economics . Retrieved 29 April 2013.
  3. Biggs, Norman L. (2002). Discrete Mathematics (Second ed.).
  4. "Algebraic Graph Theory". UK: Cambridge Mathematical Library . Retrieved 15 April 2014.
  5. "Personal Details". UK: London School of Economics . Retrieved 15 April 2014.
  6. Biggs, Norman (2013). "Thomas Harriot". BSHM Bulletin: Journal of the British Society for the History of Mathematics. 28 (2): 66–74. doi:10.1080/17498430.2013.721331. S2CID   53586313.
  7. Biggs, Norman L. (25 June 1997). "Chip-Firing and the Critical Group of a Graph" (PDF). Journal of Algebraic Combinatorics: 25–45. Retrieved 10 May 2014.
  8. wikidot. "Chip-firing references" . Retrieved 19 May 2014.
  9. Wilf, Herbert S. (1975). "Review of Algebraic graph theory by Norman Biggs and Combinatorial theory seminar by Jacobus H. van Lint" (PDF). Bull. Amer. Math. Soc. 81 (3): 536–538. doi: 10.1090/s0002-9904-1975-13731-1 .
  10. Kantor, William M. (1981). "Review of Permutation groups and combinatorial structures by N. L. Biggs and A. T. White" (PDF). Bull. Amer. Math. Soc. (N.S.). 5 (2): 197–201. doi: 10.1090/s0273-0979-1981-14944-2 .
  11. "Contributions to Mathematics". UK: London School of Economics . Retrieved 15 April 2014.