Nuclear artillery

Last updated
Upshot-Knothole Grable, a 1953 test of a nuclear artillery projectile at the Nevada Test Site (photo depicts an artillery piece with a 280 mm bore (11 inch), and the explosion of its artillery shell at a distance of 10 km (6.2 mi)) Nuclear artillery test Grable Event - Part of Operation Upshot-Knothole.jpg
Upshot–Knothole Grable, a 1953 test of a nuclear artillery projectile at the Nevada Test Site (photo depicts an artillery piece with a 280 mm bore (11 inch), and the explosion of its artillery shell at a distance of 10 km (6.2 mi))
Video of Upshot–Knothole Grable test

Nuclear artillery is a subset of limited-yield tactical nuclear weapons, in particular those weapons that are launched from the ground at battlefield targets. Nuclear artillery is commonly associated with shells delivered by a cannon, but in a technical sense short-range artillery rockets or tactical ballistic missiles are also included.

Contents

The development of nuclear artillery was part of a broad push by nuclear weapons countries to develop nuclear weapons which could be used tactically against enemy armies in the field (as opposed to strategic uses against cities, military bases, and heavy industry). Nuclear artillery was both developed and deployed by a small group of states, including the United States, the Soviet Union, and France. The United Kingdom planned and partially developed such weapon systems (the Blue Water missile and the Yellow Anvil artillery shell) but did not put them into production.

A second group of states has derivative association with nuclear artillery. These nations fielded artillery units trained and equipped to use nuclear weapons, but did not control the devices themselves. Instead, the devices were held by embedded custodial units of the developing countries. These custodial units retained control of the nuclear weapons until they were released for use in a crisis. This second group has included such North Atlantic Treaty Organisation (NATO) countries as Belgium, Canada, West Germany, Greece, Italy, the Netherlands, Turkey, and the United Kingdom.

Today, nuclear artillery has been almost entirely replaced with mobile tactical ballistic missile launchers, carrying missiles with nuclear warheads.

The United States

Weapons designers and a full-size W48 155 mm artillery shell mockup W48 155-millimeter nuclear shell.jpg
Weapons designers and a full-size W48 155 mm artillery shell mockup

United States developments resulted in nuclear weapons for various artillery systems. After the short-lived M65 Atomic Cannon, standard howitzers were used. Delivery systems include, in approximate order of development:

280 mm "Atomic Annie" firing the Shot GRABLE, May 25, 1953 NNSA-NSO-952.jpg
280 mm "Atomic Annie" firing the Shot GRABLE, May 25, 1953

The first artillery test was on May 25, 1953 at the Nevada Test Site. Fired as part of Operation Upshot–Knothole and codenamed Shot GRABLE, a 280 mm (11 inch) shell with a gun-type fission warhead was fired 10,000 m (6.2 miles) and detonated 160 m (525 ft) above the ground with an estimated yield of 15 kilotons. [1] This was the only nuclear artillery shell ever actually fired in the U.S. nuclear weapons test program. The shell was 1,384 mm (4.5 ft) long and weighed 365 kg (805 lb). It was fired from a special, very large artillery piece, nicknamed "Atomic Annie", built by the Artillery Test Unit of Fort Sill, Oklahoma. About 3,200 soldiers and civilians were present. The warhead was designated the W9 nuclear warhead and 80 were produced in 1952 to 1953 for the T-124 shell. It was retired in 1957.

280 mm 'Atomic Annie' at the Virginia War Museum VWM240mmAtomicAnnie01.jpg
280 mm 'Atomic Annie' at the Virginia War Museum

Development work continued and resulted in the W19, a 280 mm shell, a longer version of the W9. Only 80 warheads were produced and the system was retired in 1963 coinciding with the introduction of the W48 warhead.

The W48 was 846 mm (33.3 in) long and weighed 58 kg (128 lb); it was in a 155 mm M-45 AFAP (artillery fired atomic projectile) for firing from standard 155 mm howitzer. The fission warhead was a linear implosion type, consisting of a long cylinder of subcritical fissile material which is compressed and shaped by explosive into a supercritical sphere. The W48 yielded an explosive force of just 100 tons of TNT. [2]

The W48 went into production beginning in 1963, and 135 Mod 0 version projectiles were produced by 1968 when it was replaced by the Mod 1. The Mod 1 was manufactured from 1965 through 1969. 925 of these were produced.

Only one type of artillery round other than the W48 was produced in large numbers. It was the W33 nuclear warhead for use in an 8-inch-diameter (203 mm) artillery shell. About 2,000 of these warheads were produced from 1957 to 1965. Each XM422 projectile was 940 mm (37 in) long, it had a projectile weight of 243 lb (110 kg) XM422 were fitted with a triple-deck mechanical time-base fuze. They were to be fired from a standard eight-inch howitzer, if the use of this weapon had ever been called for.

A 280 mm Atomic Cannon at Aberdeen Proving Ground Nuke Cannon 3.JPG
A 280 mm Atomic Cannon at Aberdeen Proving Ground

The W33's four explosive yields were all greater than that of the W48. M422 projectiles were hand-assembled in the field to provide the required yield, three yielding 5 to 10 kilotons and one with 40 kilotons. There was also a ballistically matched spotting round (HES M424) and a special white bag charge system, M80, composed of charges one through three. The M423 ordnance training rounds and their associated "bird cages" can be seen at the National Atomic Museum in Albuquerque, New Mexico.

Efforts were made to update the warheads: the 155 mm W74 and 203 mm W75 were developed from about 1970, and they were intended to have a yield of 100 tons or more. These versions were canceled in 1973. [3] A further development program began in the 1980s: the W82, for the XM-785 (a 155 mm shell), was intended to yield up to two kilotons with an enhanced radiation capability. Its development was halted in 1983. A W82-1 fission-only type was designed but was canceled in 1990.

Other developments also continued. In 1958 a fusion warhead was developed and tested, the UCRL Swift. It was 622 mm (24.5 in) long, 127 mm (5.0 in) diameter, and weighed 43.5 kg (96 lb). At its test, it yielded only 190 tons; it failed to achieve fusion, and only the initial fission explosion worked correctly. There are unconfirmed reports that work on similar concepts continued into the 1970s and resulted in a one-kiloton warhead design for 5-inch (127 mm) naval gun rounds; these, however, were never deployed as operational weapons.

In 1991, the US unilaterally withdrew its nuclear artillery shells from service, and Russia responded in kind in 1992. The US removed around 1,300 nuclear shells from Europe and reportedly dismantled its last shells by 2004. [4] Focus has since moved to the development of nuclear bunker buster munitions.

The Soviet Union

SM-54 (2A3) "Kondensator". 2A3 Kondensator.jpg
SM-54 (2А3) "Kondensator".

The Soviet Union's nuclear artillery was operated by the rocket troops and artillery branch of the Soviet ground forces. Delivery units were organic to tank and motor rifle divisions and higher echelons. The control and custody of nuclear weapons was the responsibility of the 12th Main Directorate of the Ministry of Defense and its special units.

The Soviet Union developed and eventually deployed both rocket- and projectile-type nuclear artillery systems. The first system developed was the SM-54 (2А3) 406 mm gun, nicknamed "Kondensator" (Russian: Конденсатор, "Capacitor"); this was released in 1956. A 420 mm breech-loading smoothbore self-propelled mortar, 2B1 Oka or "Transformator" (Russian: Трансформатор; "Transformer") was produced in 1957. Testing revealed critical operational defects in both systems and they were not put into full production. The purpose-built weapons suffered from the same deficiencies of the American M-65 Nuclear Cannon to which they are analogous; large, unwieldy, and quickly obsolete. [5]

Meanwhile, rocket- and missile-based delivery systems were concurrently developed. The original systems (the T7 "Scud", the FROG-1 and successors) were first introduced in the late 1950s. Development continued on missile based systems:

After the abortive effort with purpose-built artillery pieces, the Soviet approach to nuclear artillery was that nuclear munitions should be fired by standard guns and howitzers (without modification) in normal artillery units. The first nuclear weapon for use from standard 152 mm artillery, called 3BV3, was finally accepted in 1965. Subsequent weapon designs followed using existing and new technology:

At the end of the Cold War, Russia followed the United States lead and deactivated its nuclear artillery units in 1993. By 2000, Russia reported that nearly all nuclear artillery shells and missile warheads had been destroyed. [6]

France

France's nuclear artillery was provided by Artillery Regiments equipped with the Pluton missile system from 1975 to 1993 and with its successor, the longer-ranged Hadès missile, from 1991 to 1996.

NATO

Belgium, Canada, Germany, Greece, Italy, the Netherlands, Turkey, and the United Kingdom provided artillery units trained in the correct handling and operation of nuclear weapons and in some cases specialist logistic and security units. Their allocated nuclear weapons were in the custody of US Army Artillery Groups (USAAG) with subordinate US Army Field Artillery Detachments (USAFAD) assigned to the national artillery units. The Groups were part of the 59th Ordnance Brigade.

At various times these artillery units operated:

Italy

Nuclear artillery was provided by Artillery Groups equipped with the MGR-1 Honest John free flight rockets, MGM-52 Lance missiles, and 8-inch (203 mm) howitzers.

The Italian units were (links in Italian):

The Netherlands

Nuclear artillery was provided by two Artillery Groups. The Dutch units were:

Related Research Articles

<span class="mw-page-title-main">M198 howitzer</span> American 155 mm towed howitzer

The M198 is a medium-sized, towed 155 mm artillery piece, developed for service with the United States Army and Marine Corps. It was commissioned to be a replacement for the World War II-era M114 155 mm howitzer. It was designed and prototyped at the Rock Island Arsenal in 1969 with firing tests beginning in 1970 and went into full production there in 1978. It entered service in 1979 and since then 1,600 units have been produced.

<span class="mw-page-title-main">M110 howitzer</span> 203 mm Self-propelled artillery

The 8 inch (203 mm) M110 self-propelled howitzer is an American self-propelled artillery system consisting of an M115 203 mm howitzer installed on a purpose-built chassis. Before its retirement from US service, it was the largest available self-propelled howitzer in the United States Army's inventory; it continues in service with the armed forces of other countries, to which it was exported. Missions include general support, counter-battery fire, and suppression of enemy air defense systems.

<span class="mw-page-title-main">MGR-1 Honest John</span> Nuclear-capable surface-to-surface rocket

The MGR-1 Honest John rocket was the first nuclear-capable surface-to-surface rocket in the United States arsenal. Originally designated Artillery Rocket XM31, the first unit was tested on 29 June 1951, with the first production rounds delivered in January 1953. Its designation was changed to M31 in September 1953. The first Army units received their rockets by year's end and Honest John battalions were deployed in Europe in early 1954. Alternatively, the rocket was capable of carrying an ordinary high-explosive warhead weighing 1,500 pounds (680 kg).

<span class="mw-page-title-main">M115 howitzer</span> Howitzer

The M115 203 mm howitzer, also known as the M115 8-inch Howitzer, and originally the M1 8-inch Howitzer was a towed heavy howitzer developed by the United States Army and used during World War II, the Korean War, and the Vietnam War. Post-WWII it was also adopted by a number of other nations in Europe, the Middle East, and Asia.

<span class="mw-page-title-main">Mark 7 nuclear bomb</span> Nuclear bomb

Mark 7 "Thor" was the First tactical fission bomb adopted by US armed forces. It was also the first weapon to be delivered using the toss method with the help of the low-altitude bombing system (LABS). The weapon was tested in Operation Buster-Jangle. To facilitate external carry by fighter-bomber aircraft, Mark 7 was fitted with retractable stabilizer fins. The Mark 7 warhead (W7) also formed the basis of the 30.5 inches (775 mm) BOAR rocket, the Mark 90 Betty nuclear depth charge, MGR-1 Honest John rocket, and MGM-5 Corporal ballistic missile. It was also supplied for delivery by Royal Air Force Canberra aircraft assigned to NATO in Germany under the command of SACEUR. This was done under the auspices of Project E, an agreement between the United States and the UK on the RAF carriage of US nuclear weapons. In UK use it was designated 1,650 lb. H.E. M.C. The Mark 7 was in service from 1952 to 1967(8) with 1700–1800 having been built.

<span class="mw-page-title-main">Gun-type fission weapon</span> Fission-based nuclear weapon

Gun-type fission weapons are fission-based nuclear weapons whose design assembles their fissile material into a supercritical mass by the use of the "gun" method: shooting one piece of sub-critical material into another. Although this is sometimes pictured as two sub-critical hemispheres driven together to make a supercritical sphere, typically a hollow projectile is shot onto a spike, which fills the hole in its center. Its name is a reference to the fact that it is shooting the material through an artillery barrel as if it were a projectile.

<span class="mw-page-title-main">Tactical nuclear weapon</span> Nuclear weapon designed for use on a battlefield

A tactical nuclear weapon (TNW) or non-strategic nuclear weapon (NSNW) is a nuclear weapon that is designed to be used on a battlefield in military situations, mostly with friendly forces in proximity and perhaps even on contested friendly territory. Generally smaller in explosive power, they are defined in contrast to strategic nuclear weapons, which are designed mostly to be targeted at the enemy interior far away from the war front against military bases, cities, towns, arms industries, and other hardened or larger-area targets to damage the enemy's ability to wage war. As of 2024, tactical nuclear weapons have never been used.

<span class="mw-page-title-main">W48</span> Nuclear artillery

The W48 was an American nuclear artillery shell, capable of being fired from any standard 155-millimetre (6.1 in) howitzer. A tactical nuclear weapon, it was manufactured starting in 1963, and all units were retired in 1992. It was known as the XM454 AFAP in US service.

<span class="mw-page-title-main">W9 (nuclear warhead)</span> American nuclear artillery shell (1952–1957)

The W9 was an American nuclear artillery shell fired from a special 280 mm howitzer. It was produced starting in 1952 and all were retired by 1957, being superseded by the W19.

The W19, also called Katie, was an American nuclear artillery shell, derived from the earlier W9 shell. The W19 was fired from a special 11-inch (28 cm) howitzer. It was introduced in 1955 and retired in 1963.

<span class="mw-page-title-main">W79 Artillery-Fired Atomic Projectile</span> Nuclear artillery

The W79 Artillery-Fired Atomic Projectile (AFAP), also known as XM753 (Atomic RA), was an American nuclear artillery shell, capable of being fired from any NATO 8 in (203 mm) howitzer e.g. the M115 and M110 howitzer. The weapon was produced in two models; the enhanced radiation (ERW) W79 Mod 0 and fission-only W79 Mod 1. Both were plutonium-based linear-implosion nuclear weapons.

<span class="mw-page-title-main">W31</span> Nuclear warhead used by the US

The W31 was an American nuclear warhead used for two US missiles and as an atomic demolition munition.

<span class="mw-page-title-main">W33 (nuclear warhead)</span> American nuclear artillery shell

The W33 was an American nuclear artillery shell designed for use in the 8-inch (203 mm) M110 howitzer and M115 howitzer.

<span class="mw-page-title-main">W82</span> Nuclear warhead

The W82 was a low-yield tactical nuclear warhead developed by the United States and designed to be used in a 155 mm artillery shell. It was conceived as a more flexible replacement for the W48, the previous generation of 155 mm nuclear artillery shell. A previous attempt to replace the W48 with the W74 munition was canceled due to cost.

<span class="mw-page-title-main">M65 atomic cannon</span> Cold War US heavy towed howitzer

The M65 atomic cannon, often called Atomic Annie, was an artillery piece built by the United States and capable of firing a nuclear device. It was developed in the early 1950s, at the beginning of the Cold War; and fielded between April 1955 and December 1962, in West Germany, South Korea and on Okinawa.

<span class="mw-page-title-main">Project E</span> Cold War project for the US to provide the UK with nuclear weapons

Project E was a joint project between the United States and the United Kingdom during the Cold War to provide nuclear weapons to the Royal Air Force (RAF) until sufficient British nuclear weapons became available. It was subsequently expanded to provide similar arrangements for the British Army of the Rhine. A maritime version of Project E known as Project N provided nuclear depth bombs used by the RAF Coastal Command.

<span class="mw-page-title-main">MGR-3 Little John</span> Artillery rocket

The MGR-3 Little John was a free flight artillery rocket system designed and put into service by the U.S. Army during the 1950s and 1960s.

<span class="mw-page-title-main">3rd Missiles Brigade "Aquileia"</span> Military unit

The 3rd Missiles Brigade "Aquileia" was an artillery brigade of the Italian Army active between 1959 and 1991. The brigade was stationed in North-Eastern Italy and armed with missile and artillery systems capable of firing tactical nuclear weapons as part of Italy's participation in NATOs nuclear sharing programme. During peacetime the brigade fell under command of the Italian V Army Corps, but during wartime the brigade would have been subordinate to NATOs Allied Land Forces Southern Europe (LANDSOUTH) command in Verona. After the end of the Cold War the brigade was disbanded and its weapon systems retired.

<span class="mw-page-title-main">3rd Heavy Artillery Regiment "Volturno"</span> Military unit

The 3rd Heavy Artillery Regiment "Volturno" is an inactive rocket artillery regiment of the Italian Army, which was based in Oderzo in Veneto. Originally an artillery regiment of the Royal Italian Army, the regiment was formed in 1910 with pre-existing batteries. During World War I the regiment's groups and batteries fought on the Italian front. In World War II the regiment formed two army artillery groupings, one of which participated in 1941 in the invasion of Yugoslavia, while the other was sent to North Africa, where it fought in the Western Desert campaign and the Tunisian campaign. The regiment was disbanded by invading German forces after the announcement of the Armistice of Cassibile on 8 September 1943.

References

  1. Yenne, William ‘Bill’ (2006), Secret Gadgets and Strange Gizmos: High-Tech (and Low-Tech) Innovations of the U.S. Military, MBI, p. 44, ISBN   9781610607445 .
  2. Bulletin of the Atomic Scientists, Aug 1984, p. 6S.
  3. Schwartz, Stephen I. Atomic audit: the costs and consequences of U.S. nuclear weapons since 1940. Brookings Institution Press, 1998. p. 93.
  4. DeVolpi, A., V.E. Minkov, G.S. Stanford, V.A. Simonenko, Vadim Simonenko, and George Stanford. Nuclear Shadowboxing: Legacies and Challenges. 2005. p. VA-13.
  5. Zaloga, Steven J; Sarson, Peter (1994), IS-2 heavy tank, 1944–1973, Osprey, p. 43, ISBN   9781855323964
  6. Goldblat, Jozef (2002), Arms control: the new guide to negotiations and agreements, Sage, p. 100, ISBN   9780761940166 .