Nuclear salt-water rocket

Last updated

The nuclear salt-water rocket (NSWR) is a theoretical type of nuclear thermal rocket designed by Robert Zubrin. [1] In place of traditional chemical propellant, such as that in a chemical rocket, the rocket would be fueled by salts of plutonium or 20 percent enriched uranium. The solution would be contained in a bundle of pipes coated in boron carbide (for its properties of neutron absorption). Through a combination of the coating and space between the pipes, the contents would not reach critical mass until the solution is pumped into a reaction chamber, thus reaching a critical mass, and being expelled through a nozzle to generate thrust. [1]

Contents

Proposed design

Chemical rockets use heat energy produced by a chemical reaction to heat the gas products. The hot products exit through a propulsion nozzle at a very high speed, creating thrust. [2] In a nuclear thermal rocket (NTR), thrust is created by heating a fluid by using a nuclear fission reactor. The lower the molecular weight of the exhaust (hydrogen having the lowest possible), the more efficient the motor can be. However, in this engine the propellant can be any of many fluids having suitable properties as it does not participate in generating heat. [3] In a NSWR the nuclear salt-water would be made to flow through a reaction chamber and out of an exhaust nozzle in such a way and at such speeds that critical mass will begin once the chamber is filled to a certain point; however, the peak neutron flux of the fission reaction would occur outside the vehicle. [1]

Advantages of the design

There are several advantages relative to conventional NTR designs. As the peak neutron flux and fission reaction rates would occur outside the vehicle, these activities could be much more vigorous than they could be if it was necessary to house them in a vessel (which would have temperature limits due to materials constraints). [1] Additionally, a contained reactor can only allow a small percentage of its fuel to undergo fission at any given time, otherwise it would overheat and melt down (or explode in a runaway fission chain reaction). [4] The fission reaction in an NSWR is dynamic and because the reaction products are exhausted into space it doesn't have a limit on the proportion of fission fuel that reacts. In many ways NSWRs combine the advantages of fission reactors and fission bombs. [1]

Because they can harness the power of what is essentially a continuous nuclear fission explosion, NSWRs would have both very high thrust and very high exhaust velocity, meaning that the rocket would be able to accelerate quickly as well as be extremely efficient in terms of propellant usage. The combination of high thrust and high specific impulse is a very rare trait in the rocket world. [5] One design would generate 13 meganewtons of thrust at 66 km/s exhaust velocity (or 6,730 seconds ISP compared to ~4.5 km/s (450 s ISP) exhaust velocity for the best chemical rockets as of February 2023). [6]

The design and calculations discussed above are using 20 percent enriched uranium salts. However, it would be plausible to use another design which would be capable of achieving much higher exhaust velocities (4,725 km/s) and use a 30,000 tonne ice comet along with 7,500 tonnes of highly enriched uranium salts to propel a 300 tonne spacecraft up to 7.62% of the speed of light and potentially arrive at Alpha Centauri after a 60 year journey. [1]

"NSWRs share many of the features of Orion propulsion systems, except that NSWRs would generate continuous rather than pulsed thrust and may be workable on much smaller scales than the smallest feasible Orion designs (which are generally large, due to the requirements of the shock-absorber system and the minimum size of efficient nuclear explosives)." [7]

Limitations

The propellant used in the initial design would contain a rather large amount of the relatively expensive isotope 235U, which would not be very cost effective. However, if the use of NSWR began to rise, it would be possible to replace this with the cheaper isotopes 233U or 239Pu in either fission breeder reactors or (much better) nuclear fusion–fission hybrid reactors. These other fissiles would have the right characteristics to serve nearly as well, at a relatively low cost. [1] [8]

Another major limitation of the nuclear salt water rocket design by Robert Zubrin included the lack of a material to be used in the reaction chamber that could actually sustain such a reaction within a spacecraft. Zubrin claimed in his design that the apparatus was created so that the liquid flow rate or velocity was what mattered most in the process, not the material. Therefore, he argued that if the proper velocity was chosen for the liquid traveling through the reaction chamber, the site of maximum fission release could then be located at the end of the chamber, thus allowing the system to remain intact and safe to operate. These claims have still not been proven due to no test of such a device having ever been conducted. [9]

For example, Zubrin argues that if diluted nuclear fuel flows into the chamber at speed similar to diffusion speed of thermal neutrons, then nuclear reaction is confined in the chamber and does not damage the rest of the system (the nuclear analog of a gas burner). A possible problem in that line of thinking is that neutrons do not all diffuse at the same velocity, but have a broad distribution over several orders of magnitude. It is possible that tails of this velocity distribution would be sufficient to generate enough heat in fuel feeding system (by scattering and fission) to destroy the system.[ citation needed ] This question can be perhaps answered by detailed Monte-Carlo simulations of neutron transport.

The vessel's exhaust would contain radioactive isotopes, but in space these would be rapidly dispersed after travelling only a short distance; the exhaust would also be travelling at high speed (in Zubrin's scenario, faster than Solar escape velocity, allowing it to eventually leave the Solar System). This is however of little use on the surface of a planet, where a NSWR would eject massive quantities of superheated steam, still containing fissioning nuclear salts. Terrestrial testing might be subject to reasonable objections; as one physicist wrote:

"Writing the environmental impact statement for such tests [...] might present an interesting problem ...". [9]

It is also not certain that fission in a NSWR could be controlled:

"Whether fast criticality can be controlled in a rocket engine remains an open question". [10]

See also

Related Research Articles

<span class="mw-page-title-main">Spacecraft propulsion</span> Method used to accelerate spacecraft

Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. In-space propulsion exclusively deals with propulsion systems used in the vacuum of space and should not be confused with space launch or atmospheric entry.

<span class="mw-page-title-main">Magnetoplasmadynamic thruster</span> Form of electrically powered spacecraft propulsion

A magnetoplasmadynamic (MPD) thruster (MPDT) is a form of electrically powered spacecraft propulsion which uses the Lorentz force to generate thrust. It is sometimes referred to as Lorentz Force Accelerator (LFA) or MPD arcjet.

<span class="mw-page-title-main">Nuclear thermal rocket</span> Rocket engine that uses a nuclear reactor to generate thrust

A nuclear thermal rocket (NTR) is a type of thermal rocket where the heat from a nuclear reaction replaces the chemical energy of the propellants in a chemical rocket. In an NTR, a working fluid, usually liquid hydrogen, is heated to a high temperature in a nuclear reactor and then expands through a rocket nozzle to create thrust. The external nuclear heat source theoretically allows a higher effective exhaust velocity and is expected to double or triple payload capacity compared to chemical propellants that store energy internally.

A gas nuclear reactor is a proposed kind of nuclear reactor in which the nuclear fuel would be in a gaseous state rather than liquid or solid. In this type of reactor, the only temperature-limiting materials would be the reactor walls. Conventional reactors have stricter limitations because the core would melt if the fuel temperature were to rise too high. It may also be possible to confine gaseous fission fuel magnetically, electrostatically or electrodynamically so that it would not touch the reactor walls. A potential benefit of the gaseous reactor core concept is that instead of relying on the traditional Rankine or Brayton conversion cycles, it may be possible to extract electricity magnetohydrodynamically, or with simple direct electrostatic conversion of the charged particles.

<span class="mw-page-title-main">Fusion rocket</span> Rocket driven by nuclear fusion power

A fusion rocket is a theoretical design for a rocket driven by fusion propulsion that could provide efficient and sustained acceleration in space without the need to carry a large fuel supply. The design requires fusion power technology beyond current capabilities, and much larger and more complex rockets.

<span class="mw-page-title-main">Antimatter rocket</span> Rockets using antimatter as their power source

An antimatter rocket is a proposed class of rockets that use antimatter as their power source. There are several designs that attempt to accomplish this goal. The advantage to this class of rocket is that a large fraction of the rest mass of a matter/antimatter mixture may be converted to energy, allowing antimatter rockets to have a far higher energy density and specific impulse than any other proposed class of rocket.

Specific impulse is a measure of how efficiently a reaction mass engine, such as a rocket using propellant or a jet engine using fuel, generates thrust. For engines like cold gas thrusters whose reaction mass is only the fuel they carry, specific impulse is exactly proportional to the effective exhaust gas velocity.

<span class="mw-page-title-main">Nuclear pulse propulsion</span> Hypothetical spacecraft propulsion through continuous nuclear explosions for thrust

Nuclear pulse propulsion or external pulsed plasma propulsion is a hypothetical method of spacecraft propulsion that uses nuclear explosions for thrust. It originated as Project Orion with support from DARPA, after a suggestion by Stanislaw Ulam in 1947. Newer designs using inertial confinement fusion have been the baseline for most later designs, including Project Daedalus and Project Longshot.

<span class="mw-page-title-main">Rocket engine</span> Non-air breathing jet engine used to propel a missile or vehicle

A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accordance with Newton's third law. Most rocket engines use the combustion of reactive chemicals to supply the necessary energy, but non-combusting forms such as cold gas thrusters and nuclear thermal rockets also exist. Vehicles propelled by rocket engines are commonly used by ballistic missiles and rockets. Rocket vehicles carry their own oxidiser, unlike most combustion engines, so rocket engines can be used in a vacuum to propel spacecraft and ballistic missiles.

A propellant is a mass that is expelled or expanded in such a way as to create a thrust or another motive force in accordance with Newton's third law of motion, and "propel" a vehicle, projectile, or fluid payload. In vehicles, the engine that expels the propellant is called a reaction engine. Although technically a propellant is the reaction mass used to create thrust, the term "propellant" is often used to describe a substance which contains both the reaction mass and the fuel that holds the energy used to accelerate the reaction mass. For example, the term "propellant" is often used in chemical rocket design to describe a combined fuel/propellant, although the propellants should not be confused with the fuel that is used by an engine to produce the energy that expels the propellant. Even though the byproducts of substances used as fuel are also often used as a reaction mass to create the thrust, such as with a chemical rocket engine, propellant and fuel are two distinct concepts.

A radioisotope rocket or radioisotope thermal rocket is a type of thermal rocket engine that uses the heat generated by the decay of radioactive elements to heat a working fluid, which is then exhausted through a rocket nozzle to produce thrust. They are similar in nature to nuclear thermal rockets such as NERVA, but are considerably simpler and often have no moving parts. Alternatively, radioisotopes may be used in a radioisotope electric rocket, in which energy from nuclear decay is used to generate the electricity used to power an electric propulsion system.

The fission-fragment rocket is a rocket engine design that directly harnesses hot nuclear fission products for thrust, as opposed to using a separate fluid as working mass. The design can, in theory, produce very high specific impulse while still being well within the abilities of current technologies.

<span class="mw-page-title-main">Jet propulsion</span> Thrust produced by ejecting a jet of fluid

Jet propulsion is the propulsion of an object in one direction, produced by ejecting a jet of fluid in the opposite direction. By Newton's third law, the moving body is propelled in the opposite direction to the jet. Reaction engines operating on the principle of jet propulsion include the jet engine used for aircraft propulsion, the pump-jet used for marine propulsion, and the rocket engine and plasma thruster used for spacecraft propulsion. Underwater jet propulsion is also used by several marine animals, including cephalopods and salps, with the flying squid even displaying the only known instance of jet-powered aerial flight in the animal kingdom.

<span class="mw-page-title-main">Nuclear lightbulb</span>

A nuclear lightbulb is a hypothetical type of spacecraft engine using a gaseous fission reactor to achieve nuclear propulsion. Specifically it would be a type of gas core reactor rocket that uses a quartz wall to separate nuclear fuel from coolant/propellant. It would be operated at temperatures of up to 22,000°C where the vast majority of the electromagnetic emissions would be in the hard ultraviolet range. Fused silica is almost completely transparent to this light, so it would be used to contain the uranium hexafluoride and allow the light to heat reaction mass in a rocket or to generate electricity using a heat engine or photovoltaics. This type of reactor shows great promise in both of these roles.

<span class="mw-page-title-main">Rocket engine nozzle</span> Type of propelling nozzle

A rocket engine nozzle is a propelling nozzle used in a rocket engine to expand and accelerate combustion products to high supersonic velocities.

A reaction engine is an engine or motor that produces thrust by expelling reaction mass, in accordance with Newton's third law of motion. This law of motion is commonly paraphrased as: "For every action force there is an equal, but opposite, reaction force."

Nuclear gas-core-reactor rockets can provide much higher specific impulse than solid core nuclear rockets because their temperature limitations are in the nozzle and core wall structural temperatures, which are distanced from the hottest regions of the gas core. Consequently, nuclear gas core reactors can provide much higher temperatures to the propellant. Solid core nuclear thermal rockets can develop higher specific impulse than conventional chemical rockets due to the low molecular weight of a hydrogen propellant, but their operating temperatures are limited by the maximum temperature of the solid core because the reactor's temperatures cannot rise above its components' lowest melting temperature.

<span class="mw-page-title-main">Rocket propellant</span> Chemical or mixture used as fuel for a rocket engine

Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines.

A thermal rocket is a rocket engine that uses a propellant that is externally heated before being passed through a nozzle to produce thrust, as opposed to being internally heated by a redox (combustion) reaction as in a chemical rocket.

<span class="mw-page-title-main">Pulsed nuclear thermal rocket</span> Type of nuclear thermal rocket

A pulsed nuclear thermal rocket is a type of nuclear thermal rocket (NTR) concept developed at the Polytechnic University of Catalonia, Spain, and presented at the 2016 AIAA/SAE/ASEE Propulsion Conference for thrust and specific impulse (Isp) amplification in a conventional nuclear thermal rocket.

References

  1. 1 2 3 4 5 6 7 R. Zubrin (1991). "Nuclear Salt Water Rockets: High Thrust at 10,000 sec ISP" (PDF). Journal of the British Interplanetary Society . 44: 371–376.
  2. Angelin, Marcus; Rahm, Martin; Gabrielson, Erik; Gumaelius, Lena (Aug 17, 2012). "Rocket Scientist for a Day: Investigating Alternatives for Chemical Propulsion". Journal of Chemical Education. 89 (10): 1301–1304. Bibcode:2012JChEd..89.1301A. doi:10.1021/ed200848r.
  3. Babula, Mariah. "Nuclear Thermal Rocket Propulsion". NASA.gov. NASA Space Propulsion and mission analysis office. Archived from the original on June 11, 2013. Retrieved May 1, 2016.
  4. Hasegawa, Koichi (March 2012). "Facing nuclear risks: Lessons from the Fukushima nuclear disaster". International Journal of Japanese Sociology . 21 (1): 84–91. doi:10.1111/j.1475-6781.2012.01164.x.
  5. Braeunig, Robert (2005) [1997]. "Rocket propulsion". Rocket & space technology. braeunig.us. Archived from the original on 12 June 2006. Retrieved 1 May 2016.
  6. Zubrin, R. (1991). "Nuclear salt water rockets: High thrust at 10,000 sec ISP" (PDF). Journal of the British Interplanetary Society. 44: 371–376 via narod.ru.
  7. Stern, David P., Dr. (19 November 2003). "Far-out pathways to space: Nuclear power". From Stargazers to Starships (Report). Retrieved 14 November 2012.{{cite report}}: CS1 maint: multiple names: authors list (link)
  8. Kang, Jungmin; von Hippel, Frank N. (2001). "U-232 and the proliferation-resistance of U-233 in spent fuel". Science and Global Security. 9 (1): 1–32. Bibcode:2001S&GS....9....1K. doi:10.1080/08929880108426485. S2CID   8033110.
  9. 1 2 Cramer, J.G. (December 1992). "Nuke your way to the stars". Alternate View Column. Analog Science Fiction and Fact . AV-56. Retrieved 2012-03-07.
      text also available at
    "Alternate View Column AV-56". npl.washington.edu. Retrieved 2017-04-18.
  10. McNutt, Ralph L. Jr. (31 May 1999). A Realistic Interstellar Explorer (PDF) (Report). Phase I Final Report. NASA Institute for Advanced Concepts. Retrieved 14 November 2012.