Numerical algebraic geometry

Last updated

Numerical algebraic geometry is a field of computational mathematics, particularly computational algebraic geometry, which uses methods from numerical analysis to study and manipulate the solutions of systems of polynomial equations. [1] [2] [3]

Contents

Homotopy continuation

The primary computational method used in numerical algebraic geometry is homotopy continuation, in which a homotopy is formed between two polynomial systems, and the isolated solutions (points) of one are continued to the other. This is a specialization of the more general method of numerical continuation.

Let represent the variables of the system. By abuse of notation, and to facilitate the spectrum of ambient spaces over which one can solve the system, we do not use vector notation for . Similarly for the polynomial systems and .

Current canonical notation calls the start system , and the target system, i.e., the system to solve, . [4] [5] A very common homotopy, the straight-line homotopy, between and is

In the above homotopy, one starts the path variable at and continues toward . Another common choice is to run from to . In principle, the choice is completely arbitrary. In practice, regarding endgame methods for computing singular solutions using homotopy continuation, the target time being can significantly ease analysis, so this perspective is here taken. [6]

Regardless of the choice of start and target times, the ought to be formulated such that , and .

One has a choice in , including

and beyond these, specific start systems that closely mirror the structure of may be formed for particular systems. The choice of start system impacts the computational time it takes to solve , in that those that are easy to formulate (such as total degree) tend to have higher numbers of paths to track, and those that take significant effort (such as the polyhedral method) are much sharper. There is currently no good way to predict which will lead to the quickest time to solve.[ citation needed ]

Actual continuation is typically done using predictor–corrector methods, with additional features as implemented. Predicting is done using a standard ODE predictor method, such as Runge–Kutta, and correction often uses Newton–Raphson iteration.

Because and are polynomial, homotopy continuation in this context is theoretically guaranteed to compute all solutions of , due to Bertini's theorem. However, this guarantee is not always achieved in practice, because of issues arising from limitations of the modern computer, most namely finite precision. That is, despite the strength of the probability-1 argument underlying this theory, without using a priori certified tracking methods, some paths may fail to track perfectly for various reasons.

Witness set

A witness set is a data structure used to describe algebraic varieties. The witness set for an affine variety that is equidimensional consists of three pieces of information. The first piece of information is a system of equations . These equations define the algebraic variety that is being studied. The second piece of information is a linear space . The dimension of is the codimension of , and chosen to intersect transversely. The third piece of information is the list of points in the intersection . This intersection has finitely many points and the number of points is the degree of the algebraic variety . Thus, witness sets encode the answer to the first two questions one asks about an algebraic variety: What is the dimension, and what is the degree? Witness sets also allow one to perform a numerical irreducible decomposition, component membership tests, and component sampling. This makes witness sets a good description of an algebraic variety.

Certification

Solutions to polynomial systems computed using numerical algebraic geometric methods can be certified, meaning that the approximate solution is "correct". This can be achieved in several ways, either a priori using a certified tracker, [7] [8] or a posteriori by showing that the point is, say, in the basin of convergence for Newton's method. [9]

Software

Several software packages implement portions of the theoretical body of numerical algebraic geometry. These include, in alphabetic order:

Related Research Articles

<span class="mw-page-title-main">Algebraic geometry</span> Branch of mathematics

Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems. Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.

In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry.

<span class="mw-page-title-main">Diophantine equation</span> Polynomial equation whose integer solutions are sought

In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, for which only integer solutions are of interest. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents.

In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign =. The word equation and its cognates in other languages may have subtly different meanings; for example, in French an équation is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation.

<span class="mw-page-title-main">Linear algebra</span> Branch of mathematics

Linear algebra is the branch of mathematics concerning linear equations such as:

Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions. Specifically, one seeks to optimize a multivariate quadratic function subject to linear constraints on the variables. Quadratic programming is a type of nonlinear programming.

<span class="mw-page-title-main">System of linear equations</span> Several equations of degree 1 to be solved simultaneously

In mathematics, a system of linear equations is a collection of one or more linear equations involving the same variables. For example,

<span class="mw-page-title-main">Optimal control</span> Mathematical way of attaining a desired output from a dynamic system

Optimal control theory is a branch of control theory that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. It has numerous applications in science, engineering and operations research. For example, the dynamical system might be a spacecraft with controls corresponding to rocket thrusters, and the objective might be to reach the Moon with minimum fuel expenditure. Or the dynamical system could be a nation's economy, with the objective to minimize unemployment; the controls in this case could be fiscal and monetary policy. A dynamical system may also be introduced to embed operations research problems within the framework of optimal control theory.

In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form

In mathematics, a stiff equation is a differential equation for which certain numerical methods for solving the equation are numerically unstable, unless the step size is taken to be extremely small. It has proven difficult to formulate a precise definition of stiffness, but the main idea is that the equation includes some terms that can lead to rapid variation in the solution.

In mathematics, complex dimension usually refers to the dimension of a complex manifold or a complex algebraic variety. These are spaces in which the local neighborhoods of points are modeled on a Cartesian product of the form for some , and the complex dimension is the exponent in this product. Because can in turn be modeled by , a space with complex dimension will have real dimension. That is, a smooth manifold of complex dimension has real dimension ; and a complex algebraic variety of complex dimension , away from any singular point, will also be a smooth manifold of real dimension .

Numerical continuation is a method of computing approximate solutions of a system of parameterized nonlinear equations,

In mathematics, a system of equations is considered overdetermined if there are more equations than unknowns. An overdetermined system is almost always inconsistent when constructed with random coefficients. However, an overdetermined system will have solutions in some cases, for example if some equation occurs several times in the system, or if some equations are linear combinations of the others.

In mathematics, the multiplicity of a member of a multiset is the number of times it appears in the multiset. For example, the number of times a given polynomial has a root at a given point is the multiplicity of that root.

A system of polynomial equations is a set of simultaneous equations f1 = 0, ..., fh = 0 where the fi are polynomials in several variables, say x1, ..., xn, over some field k.

In computer algebra, a triangular decomposition of a polynomial system S is a set of simpler polynomial systems S1, ..., Se such that a point is a solution of S if and only if it is a solution of one of the systems S1, ..., Se.

<span class="mw-page-title-main">Ordinary differential equation</span> Differential equation containing derivatives with respect to only one variable

In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable. As with other DE, its unknown(s) consists of one function(s) and involves the derivatives of those functions. The term "ordinary" is used in contrast with partial differential equations which may be with respect to more than one independent variable.

Andrew John Sommese is an American mathematician, specializing in algebraic geometry.

Numerical certification is the process of verifying the correctness of a candidate solution to a system of equations. In (numerical) computational mathematics, such as numerical algebraic geometry, candidate solutions are computed algorithmically, but there is the possibility that errors have corrupted the candidates. For instance, in addition to the inexactness of input data and candidate solutions, numerical errors or errors in the discretization of the problem may result in corrupted candidate solutions. The goal of numerical certification is to provide a certificate which proves which of these candidates are, indeed, approximate solutions.

Nonlinear algebra is the nonlinear analogue to linear algebra, generalizing notions of spaces and transformations coming from the linear setting. Algebraic geometry is one of the main areas of mathematical research supporting nonlinear algebra, while major components coming from computational mathematics support the development of the area into maturity.

References

  1. Hauenstein, Jonathan D.; Sommese, Andrew J. (March 2017). "What is numerical algebraic geometry?". Journal of Symbolic Computation. 79: 499–507. doi: 10.1016/j.jsc.2016.07.015 .
  2. Sommese, Andrew J.; Verschelde, Jan; Wampler, Charles W. (2005). "Introduction to Numerical Algebraic Geometry". In Bronstein, Manuel; Cohen, Arjeh M.; Cohen, Henri; Eisenbud, David; Sturmfels, Bernd; Dickenstein, Alicia; Emiris, Ioannis Z. (eds.). Solving polynomial equations : foundations, algorithms, and applications (PDF). Springer-verlag. doi:10.1007/3-540-27357-3_8. ISBN   978-3-540-24326-7.
  3. 1 2 Leykin, Anton (2000-01-01). "Numerical algebraic geometry". Journal of Software for Algebra and Geometry. 3 (1): 5–10. doi: 10.2140/jsag.2011.3.5 . ISSN   1948-7916.
  4. Sommese, Andrew J.; Wampler, II, Charles W. (2005). The numerical solution of systems of polynomials arising in engineering and science. World Scientific. ISBN   978-981-256-184-8.
  5. 1 2 Bates, Daniel J.; Sommese, Andrew J.; Hauenstein, Jonathan D; Wampler, Charles W. (2013). Numerically solving polynomial systems with Bertini. Society for Industrial and Applied Mathematics. ISBN   978-1-61197-269-6.
  6. Chen, Tianran; Li, Tien-Yien (2015). "Homotopy continuation method for solving systems of nonlinear and polynomial equations". Communications in Information and Systems. 15 (2): 276–277. doi: 10.4310/CIS.2015.v15.n2.a1 .
  7. Beltrán, Carlos; Leykin, Anton (2012-03-01). "Certified Numerical Homotopy Tracking". Experimental Mathematics. 21 (1): 69–83. arXiv: 0912.0920 . doi:10.1080/10586458.2011.606184. ISSN   1058-6458. S2CID   2889087.
  8. Beltrán, Carlos; Leykin, Anton (2013-02-01). "Robust Certified Numerical Homotopy Tracking". Foundations of Computational Mathematics. 13 (2): 253–295. arXiv: 1105.5992 . doi:10.1007/s10208-013-9143-2. ISSN   1615-3375. S2CID   32990257.
  9. 1 2 Hauenstein, Jonathan D.; Sottile, Frank (August 2012). "Algorithm 921: alphaCertified: Certifying Solutions to Polynomial Systems". ACM Transactions on Mathematical Software. 38 (4): 1–20. doi:10.1145/2331130.2331136. S2CID   13821271.
  10. Chen, T.; Lee, T. L.; Li, T. Y. (2014). "Hom4PS-3: A Parallel Numerical Solver for Systems of Polynomial Equations Based on Polyhedral Homotopy Continuation Methods". In Hong, H.; Yap, C. (eds.). Mathematical software -- ICMS 2014 : 4th International Congress, Seoul, South Korea, August 5-9, 2014. Proceedings. pp. 183–190. doi:10.1007/978-3-662-44199-2_30. ISBN   978-3-662-44199-2 . Retrieved 28 April 2020.
  11. Hom4PS Team. "Featured Products". Hom4PS-3. Michigan State University. Retrieved 28 April 2020.{{cite web}}: CS1 maint: numeric names: authors list (link)
  12. Breiding, Paul; Timme, Sascha (May 2018). "HomotopyContinuation.jl: A package for homotopy continuation in Julia". arXiv: 1711.10911v2 [cs.MS].
  13. Verschelde, Jan (1 June 1999). "Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation". ACM Transactions on Mathematical Software. 25 (2): 251–276. doi: 10.1145/317275.317286 . S2CID   15485257.