Opacifier

Last updated
Tablet with opaque blister packaging Doxepin film-coated tablets.jpg
Tablet with opaque blister packaging

An opacifier is a substance added to a material in order to make the ensuing system opaque. An example of a chemical opacifier is titanium dioxide (TiO2), which is used as an opacifier in paints, in paper, and in plastics. It has very high refraction index (rutile modification 2.7 and anatase modification 2.55) and optimum refraction is obtained with crystals about 225 nanometers. Impurities in the crystal alter the optical properties. [1] It is also used to opacify ceramic glazes [2] and milk glass; bone ash is also used.

Contents

Opacifiers must have a refractive index (RI) substantially different from the system. Conversely, clarity may be achieved in a system by choosing components with very similar refractive indices. [3]

Glasses

Ancient milk glasses used crystals of calcium antimonate, formed in the melt from calcium present in the glass and an antimony additive. Opaque yellow glasses contained crystals of lead antimonate; bindheimite mineral may have been used as the additive. Under oxidizing condition, lead also forms incompletely dissolved lead pyroantimonate (Pb2Sb2O7). From 2nd century BC tin oxide appears in use as opacifier, likely in the form of cassiterite mineral. Opaque yellow can be produced as lead stannate; the color is paler than the lead antimonate one. Later calcium and sodium phosphates became used; bone ash contains calcium phosphate in a high proportion. Calcium fluoride was also used, especially in China. [4]

For dental ceramics, several approaches are in use. Spodumene or mica crystals can be precipitated. Fluorides of aluminium, calcium, barium, and magnesium can be used with suitable heat treatment. Tin oxide can be used, but zirconia and titania give better results; for titania, the appropriate resulting particle size is between submicron to 20 μm. Another desirable opacifier is zinc oxide. [5]

Opacifiers must also form small particles in the system. Opacifiers are generally inert.

X-ray opacifiers

In context of x-rays, opacifiers are additives with high absorption of x-rays; typically these are particles or compounds of lead, barium (often barium sulfate), tungsten, or other high atomic weight elements. Sometimes opacifiers are added to medical implants to make them visible under X-ray imaging. This is especially true in the case of most polymers which are often unrecognizable in the body when viewed using X-rays.

Rocket propellants

In solid rocket propellants and some translucent smokeless powders, the primary method of heat transfer into the propellant grain from the combustion process is by radiation, and opacifiers such as "lamp black" may be added to the propellant mixture to ensure the heat does not penetrate far below the surface of the grain, which could cause detonation. The opacifiers also prevent sub-surface overheating and localized premature ignition in the grains where imperfections absorbing the thermal radiation are present. Carbon black is commonly used for this purpose; other possible additives are nigrosin, Prussian blue, methylene blue, etc. in amounts ranging commonly between 0.1 and 0.5%. [6]

Related Research Articles

Barium Chemical element with atomic number 56

Barium is a chemical element with the symbol Ba and atomic number 56. It is the fifth element in group 2 and is a soft, silvery alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element.

Ceramic Inorganic, nonmetallic solid prepared by the action of heat

A ceramic is any of the various hard, brittle, heat-resistant and corrosion-resistant materials made by shaping and then firing a nonmetallic mineral, such as clay, at a high temperature. Common examples are earthenware, porcelain, and brick.

Glass Transparent non-crystalline solid material

Glass is a non-crystalline, often transparent amorphous solid, that has widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics. Glass is most often formed by rapid cooling (quenching) of the molten form; some glasses such as volcanic glass are naturally occurring. The most familiar, and historically the oldest, types of manufactured glass are "silicate glasses" based on the chemical compound silica, the primary constituent of sand. Soda-lime glass, containing around 70% silica, accounts for around 90% of manufactured glass. The term glass, in popular usage, is often used to refer only to this type of material, although silica-free glasses often have desirable properties for applications in modern communications technology. Some objects, such as drinking glasses and eyeglasses, are so commonly made of silicate-based glass that they are simply called by the name of the material.

Fluorite

Fluorite (also called fluorspar) is the mineral form of calcium fluoride, CaF2. It belongs to the halide minerals. It crystallizes in isometric cubic habit, although octahedral and more complex isometric forms are not uncommon.

Vitrification

Vitrification is the transformation of a substance into a glass, that is to say, a non-crystalline amorphous solid. In the production of ceramics, vitrification is responsible for its impermeability to water.

Dental products are specially fabricated materials, designed for use in dentistry. There are many different types of dental products, and their characteristics vary according to their intended purpose.

Lead glass

Lead glass, commonly called crystal, is a variety of glass in which lead replaces the calcium content of a typical potash glass. Lead glass contains typically 18–40% lead(II) oxide (PbO), while modern lead crystal, historically also known as flint glass due to the original silica source, contains a minimum of 24% PbO. Lead glass is often desirable for a variety of uses due to its clarity.

Milk glass

Milk glass is an opaque or translucent, milk white or colored glass that can be blown or pressed into a wide variety of shapes. First made in Venice in the 16th century, colors include blue, pink, yellow, brown, black, and the eponymous white.

Rocket Candy, or R-Candy, is a type of rocket propellant for model rockets made with sugar as a fuel, and containing an oxidizer. The propellant can be divided into three groups of components: the fuel, the oxidizer, and the additive(s). In the past, sucrose was most commonly used as fuel. Modern formulations most commonly use sorbitol for its ease of production. The most common oxidizer is potassium nitrate (KNO3). Potassium nitrate is most commonly found in household stump remover. Additives can be many different substances, and either act as catalysts or enhance the aesthetics of the liftoff or flight. A traditional sugar propellant formulation is typically prepared in a 65:35 (13:7) oxidizer to fuel ratio.

Lumicera is a transparent ceramic developed by Murata Manufacturing Co., Ltd.

Crown glass (optics) Type of glass

Crown glass is a type of optical glass used in lenses and other optical components. It has relatively low refractive index (≈1.52) and low dispersion. Crown glass is produced from alkali-lime silicates containing approximately 10% potassium oxide and is one of the earliest low dispersion glasses.

Tin-glazing

Tin-glazing is the process of giving tin-glazed pottery items a ceramic glaze that is white, glossy and opaque, which is normally applied to red or buff earthenware. Tin-glaze is plain lead glaze with a small amount of tin oxide added. The opacity and whiteness of tin glaze encourage its frequent decoration. Historically this has mostly been done before the single firing, when the colours blend into the glaze, but since the 17th century also using overglaze enamels, with a light second firing, allowing a wider range of colours. Majolica, maiolica, delftware and faience are among the terms used for common types of tin-glazed pottery.

A pyrotechnic composition is a substance or mixture of substances designed to produce an effect by heat, light, sound, gas/smoke or a combination of these, as a result of non-detonative self-sustaining exothermic chemical reactions. Pyrotechnic substances do not rely on oxygen from external sources to sustain the reaction.

Ceramic glaze

Ceramic glaze is an impervious layer or coating of a vitreous substance which has been fused to a ceramic body through firing. Glaze can serve to color, decorate or waterproof an item. Glazing renders earthenware vessels suitable for holding liquids, sealing the inherent porosity of unglazed biscuit earthenware. It also gives a tougher surface. Glaze is also used on stoneware and porcelain. In addition to their functionality, glazes can form a variety of surface finishes, including degrees of glossy or matte finish and color. Glazes may also enhance the underlying design or texture either unmodified or inscribed, carved or painted.

Solid One of the four fundamental states of matter

Solid is one of the four fundamental states of matter. The molecules in a solid are closely packed together and contain the least amount of kinetic energy. A solid is characterized by structural rigidity and resistance to a force applied to the surface. Unlike a liquid, a solid object does not flow to take on the shape of its container, nor does it expand to fill the entire available volume like a gas. The atoms in a solid are bound to each other, either in a regular geometric lattice, or irregularly. Solids cannot be compressed with little pressure whereas gases can be compressed with little pressure because the molecules in a gas are loosely packed.

Barium borate is an inorganic compound, a borate of barium with a chemical formula BaB2O4 or Ba(BO2)2. It is available as a hydrate or dehydrated form, as white powder or colorless crystals. The crystals exist in the high-temperature α phase and low-temperature β phase, abbreviated as BBO; both phases are birefringent, and BBO is a common nonlinear optical material.

Low-dispersion glass is a type of glass with low dispersion. Crown glass is an example of a relatively inexpensive low-dispersion glass.

Fluoride glass

Fluoride glass is a class of non-oxide optical glasses composed of fluorides of various metals. Due to their low viscosity, it is very difficult to completely avoid the occurrence of any crystallization while processing it through the glass transition.

Delay composition, also called delay charge or delay train, is a pyrotechnic composition, a sort of pyrotechnic initiator, a mixture of oxidizer and fuel that burns in a slow, constant rate that should not be significantly dependent on temperature and pressure. Delay compositions are used to introduce a delay into the firing train, e.g. to properly sequence firing of fireworks, to delay firing of ejection charges in e.g. model rockets, or to introduce a few seconds of time between triggering a hand grenade and its explosion. Typical delay times range between several milliseconds and several seconds.

Glass coloring and color marking

Glass coloring and color marking may be obtained by in several ways.

  1. by the addition of coloring ions,
  2. by precipitation of nanometer sized colloides,

References

  1. Karvinen, S. (2003). "The effects of trace elements on the crystal properties of TiO2". Solid State Sciences. 5 (5): 811–819. Bibcode:2003SSSci...5..811K. doi:10.1016/S1293-2558(03)00082-7.
  2. Tin Oxide ( SnO2 ) Stannic Oxide – Properties and Applications, The A to Z of Materials.
  3. Raghavan, V. (2004). Materials Science and Engineering: A First Course. India: Prentice Hall. ISBN   81-203-2455-2.
  4. Henderson, Julian (2013-04-15). The Science and Archaeology of Materials: An Investigation of Inorganic Materials. Routledge. ISBN   9781135953171.
  5. El-Meliegy, Emad; Noort, Richard van (2011-12-02). Glasses and Glass Ceramics for Medical Applications. Springer Science & Business Media. ISBN   9781461412281.
  6. US Army. Encyclopedia of Explosives and Related Items, vol.8