OpenSim (simulation toolkit)

Last updated
OpenSim
Developer(s) Simbios
Stable release
4.5 / March 9, 2024;6 days ago (2024-03-09) [1]
Repository github.com/opensim-org/opensim-core
Operating system Cross-platform
Type Technical computing
License Apache 2.0 [2]
Website simtk.org/projects/opensim/

OpenSim is an open source software system for biomechanical modeling, simulation and analysis. Its purpose is to provide free and widely accessible tools for conducting biomechanics research and motor control science. OpenSim enables a wide range of studies, including analysis of walking dynamics, studies of sports performance, simulations of surgical procedures, analysis of joint loads, design of medical devices, and animation of human and animal movement. The software performs inverse dynamics analysis and forward dynamics simulations. OpenSim is used in hundreds of biomechanics laboratories around the world to study movement and has a community of software developers contributing new features.

Contents

OpenSim is one of the flagship applications from Simbios, a NIH Center for Biomedical Computation at Stanford University. Founded in 2004, Simbios is charged with a mandate to provide leading software and computational tools for physics-based modeling and simulation of biological structures. OpenSim was designed to propel biomechanics research by providing a common framework for investigation and a vehicle for exchanging complex musculoskeletal models.

History

OpenSim 1.0 was released on August 20, 2007 and provided capabilities for viewing musculoskeletal models, importing models developed in SIMM (Musculographics Inc.), editing muscle paths, and generating muscle actuated simulations that track experimental data.

OpenSim 1.1 was released on December 11, 2007, which added new features such as user-specified camera positions for recording movies of simulations, and a perturbation (sensitivity) analysis for inquiry into the function of individual muscles.

OpenSim 2.2.1 was released on April 11, 2011. This software update enhanced the user interface and allowed the user to set bounds on activations of muscles and actuators relating to static optimization not dynamic optimization.

OpenSim 2.4 was released on October 10, 2011. This newest and most recent update includes faster and more robust tools for Inverse Dynamics and Inverse Kinematics, new visualization tools, enhanced access for API users, and many usability improvements.

OpenSim 3.2 was released on March 13, 2014. This update focused on improving the OpenSim scripting interface, accessible through the Graphical User Interface (GUI), Matlab, and now Python. It also added new visualization capabilities and usability improvements in the OpenSim application. Full list of features can be found here.

Related Research Articles

<span class="mw-page-title-main">Eclipse (software)</span> Software development environment

Eclipse is an integrated development environment (IDE) used in computer programming. It contains a base workspace and an extensible plug-in system for customizing the environment. It is the second-most-popular IDE for Java development, and, until 2016, was the most popular. Eclipse is written mostly in Java and its primary use is for developing Java applications, but it may also be used to develop applications in other programming languages via plug-ins, including Ada, ABAP, C, C++, C#, Clojure, COBOL, D, Erlang, Fortran, Groovy, Haskell, JavaScript, Julia, Lasso, Lua, NATURAL, Perl, PHP, Prolog, Python, R, Ruby, Rust, Scala, and Scheme. It can also be used to develop documents with LaTeX and packages for the software Mathematica. Development environments include the Eclipse Java development tools (JDT) for Java and Scala, Eclipse CDT for C/C++, and Eclipse PDT for PHP, among others.

<span class="mw-page-title-main">Visual Molecular Dynamics</span> Visualization and modelling software

Visual Molecular Dynamics (VMD) is a molecular modelling and visualization computer program. VMD is developed mainly as a tool to view and analyze the results of molecular dynamics simulations. It also includes tools for working with volumetric data, sequence data, and arbitrary graphics objects. Molecular scenes can be exported to external rendering tools such as POV-Ray, RenderMan, Tachyon, Virtual Reality Modeling Language (VRML), and many others. Users can run their own Tcl and Python scripts within VMD as it includes embedded Tcl and Python interpreters. VMD runs on Unix, Apple Mac macOS, and Microsoft Windows. VMD is available to non-commercial users under a distribution-specific license which permits both use of the program and modification of its source code, at no charge.

<span class="mw-page-title-main">Ngspice</span> Analog circuit simulator software

Ngspice is an open-source mixed-level/mixed-signal electronic circuit simulator. It is a successor of the latest stable release of Berkeley SPICE, version 3f.5, which was released in 1993. A small group of maintainers and the user community contribute to the ngspice project by providing new features, enhancements and bug fixes.

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is a molecular dynamics program from Sandia National Laboratories. LAMMPS makes use of Message Passing Interface (MPI) for parallel communication and is free and open-source software, distributed under the terms of the GNU General Public License.

Tinker, previously stylized as TINKER, is a suite of computer software applications for molecular dynamics simulation. The codes provide a complete and general set of tools for molecular mechanics and molecular dynamics, with some special features for biomolecules. The core of the software is a modular set of callable routines which allow manipulating coordinates and evaluating potential energy and derivatives via straightforward means.

Specialized wind energy software applications aid in the development and operation of wind farms.

Web-based simulation (WBS) is the invocation of computer simulation services over the World Wide Web, specifically through a web browser. Increasingly, the web is being looked upon as an environment for providing modeling and simulation applications, and as such, is an emerging area of investigation within the simulation community.

<span class="mw-page-title-main">UGENE</span>

UGENE is computer software for bioinformatics. It works on personal computer operating systems such as Windows, macOS, or Linux. It is released as free and open-source software, under a GNU General Public License (GPL) version 2.

<span class="mw-page-title-main">ScanIP</span>

Synopsys Simpleware ScanIP is a 3D image processing and model generation software program developed by Synopsys Inc. to visualise, analyse, quantify, segment and export 3D image data from magnetic resonance imaging (MRI), computed tomography (CT), microtomography and other modalities for computer-aided design (CAD), finite element analysis (FEA), computational fluid dynamics (CFD), and 3D printing. The software is used in the life sciences, materials science, nondestructive testing, reverse engineering and petrophysics.

<span class="mw-page-title-main">SimulationX</span> Software application

SimulationX is a CAE software application running on Microsoft Windows for the physical simulation of technical systems. It is developed and sold by ESI Group.

QBlade is a public source, cross-platform simulation software for wind turbine blade design and aerodynamic simulation. It comes with a user-friendly graphical user interface (GUI) based on Qt.

JModelica.org is a commercial software platform based on the Modelica modeling language for modeling, simulating, optimizing and analyzing complex dynamic systems. The platform is maintained and developed by Modelon AB in collaboration with academic and industrial institutions, notably Lund University and the Lund Center for Control of Complex Systems (LCCC). The platform has been used in industrial projects with applications in robotics, vehicle systems, energy systems, CO2 separation and polyethylene production.

Simcenter Amesim is a commercial simulation software for the modeling and analysis of multi-domain systems. It is part of systems engineering domain and falls into the mechatronic engineering field.

<span class="mw-page-title-main">Scott L. Delp</span>

Scott L. Delp is an American academic who is the James H. Clark Professor of Bioengineering and Mechanical Engineering at Stanford University. He is the Founding Chairman of the Department of Bioengineering at Stanford, the Director of the National Center for Simulation in Rehabilitation Research (NCSRR), Simbios, the NIH Center for Physics-Based Simulations of Biological Structures at Stanford., and the Mobilize Center, a data science research center focused on mobile health.

AnimatLab is an open-source neuromechanical simulation tool that allows authors to easily build and test biomechanical models and the neural networks that control them to produce behaviors. Users can construct neural models of varied level of details, 3D mechanical models of triangle meshes, and use muscles, motors, receptive fields, stretch sensors and other transducers to interface the two systems. Experiments can be run in which various stimuli are applied and data is recorded, making it a useful tool for computational neuroscience. The software can also be used to model biomimetic robotic systems.

<span class="mw-page-title-main">SU2 code</span>

SU2 is a suite of open-source software tools written in C++ for the numerical solution of partial differential equations (PDE) and performing PDE-constrained optimization. The primary applications are computational fluid dynamics and aerodynamic shape optimization, but has been extended to treat more general equations such as electrodynamics and chemically reacting flows. SU2 supports continuous and discrete adjoint for calculating the sensitivities/gradients of a scalar field.

Multibody simulation (MBS) is a method of numerical simulation in which multibody systems are composed of various rigid or elastic bodies. Connections between the bodies can be modeled with kinematic constraints or force elements. Unilateral constraints and Coulomb-friction can also be used to model frictional contacts between bodies. Multibody simulation is a useful tool for conducting motion analysis. It is often used during product development to evaluate characteristics of comfort, safety, and performance. For example, multibody simulation has been widely used since the 1990s as a component of automotive suspension design. It can also be used to study issues of biomechanics, with applications including sports medicine, osteopathy, and human-machine interaction.

Tendon-driven robots (TDR) are robots whose limbs mimic biological musculoskeletal systems. They use plastic straps to mimic muscles and tendons. Such robots are claimed to move in a "more natural" way than traditional robots that use rigid metal or plastic limbs controlled by geared actuators. TDRs can also help understand how biomechanics relates to embodied intelligence and cognition.

References

  1. "Releases". github.com/opensim-org. Retrieved 15 March 2024.
  2. "LICENSE.txt". github.com/opensim-org. Retrieved 15 March 2024.