PX4 autopilot

Last updated
PX4 AutoPilot
Developer(s) PX4 Development Team and Community
Initial releaseMarch 2012
Repository https://github.com/PX4/PX4-Autopilot
Written in C, C++
Operating system NuttX, ROS
License BSD-3-Clause
Website http://px4.io

The PX4 autopilot is an open-source system designed for affordable autonomous aircraft, suitable for hobbyists operating small and remotely piloted aircraft. Originating in 2009, this project is continually evolving, with ongoing development and utilization at the Computer Vision and Geometry Lab of ETH Zurich (Swiss Federal Institute of Technology).[ citation needed ] It also receives support from the Autonomous Systems Lab and the Automatic Control Laboratory. Currently, numerous vendors are manufacturing PX4 autopilots and associated accessories [ citation needed ].

Contents

Overview

PX4 supports the following features:

PX4 is capable of integrating with other autopilot software, such as the QGroundControl ground control station software, [5] via the MAVLink protocol. [6]

PX4 is open-source and available under a BSD-3-Clause license.

Supported hardware

For an up-to-date and complete list of the hardware supported by the PX4 Autopilot, visit their "Compatible Hardware" website.

See also

Related Research Articles

<span class="mw-page-title-main">Avionics</span> Electronic systems used on aircraft

Avionics are the electronic systems used on aircraft. Avionic systems include communications, navigation, the display and management of multiple systems, and the hundreds of systems that are fitted to aircraft to perform individual functions. These can be as simple as a searchlight for a police helicopter or as complicated as the tactical system for an airborne early warning platform.

<span class="mw-page-title-main">Fly-by-wire</span> Electronic flight control system

Fly-by-wire (FBW) is a system that replaces the conventional manual flight controls of an aircraft with an electronic interface. The movements of flight controls are converted to electronic signals transmitted by wires, and flight control computers determine how to move the actuators at each control surface to provide the ordered response. Implementations either use mechanical flight control backup systems or else are fully electronic.

<span class="mw-page-title-main">Unmanned aerial vehicle</span> Aircraft without any human pilot on board

An unmanned aerial vehicle (UAV), commonly known as a drone, is an aircraft without any human pilot, crew, or passengers on board. UAVs were originally developed through the twentieth century for military missions too "dull, dirty or dangerous" for humans, and by the twenty-first, they had become essential assets to most militaries. As control technologies improved and costs fell, their use expanded to many non-military applications. These include aerial photography, area coverage, precision agriculture, forest fire monitoring, river monitoring, environmental monitoring, policing and surveillance, infrastructure inspections, smuggling, product deliveries, entertainment, and drone racing.

<span class="mw-page-title-main">Self-driving car</span> Vehicle operated with reduced human input

A self-driving car, also known as an autonomous car (AC), driverless car, robotic car or robo-car, is a car that is capable of operating with reduced or no human input. Self-driving cars are responsible for all driving activities including perceiving the environment, monitoring important systems, and controlling the vehicle, including navigating from origin to destination.

<span class="mw-page-title-main">Autopilot</span> System to maintain vehicle trajectory in lieu of direct operator command

An autopilot is a system used to control the path of an aircraft, marine craft or spacecraft without requiring constant manual control by a human operator. Autopilots do not replace human operators. Instead, the autopilot assists the operator's control of the vehicle, allowing the operator to focus on broader aspects of operations.

<span class="mw-page-title-main">Dead man's switch</span> Equipment that activates or deactivates upon the incapacitation of operator

A dead man's switch is a switch that is designed to be activated or deactivated if the human operator becomes incapacitated, such as through death, loss of consciousness, or being bodily removed from control. Originally applied to switches on a vehicle or machine, it has since come to be used to describe other intangible uses, as in computer software.

Slugs is an open-source autopilot system oriented toward inexpensive autonomous aircraft. Low cost and wide availability enable hobbyist use in small remotely piloted aircraft. The project started in 2009 and is being further developed and used at Autonomous Systems Lab of University of California Santa Cruz. Several vendors produce Slugs autopilots and accessories.

<span class="mw-page-title-main">Vehicular automation</span> Automation for various purposes of vehicles

Vehicular automation involves the use of mechatronics, artificial intelligence, and multi-agent systems to assist the operator of a vehicle such as a car, lorries, aircraft, or watercraft. A vehicle using automation for tasks such as navigation to ease but not replace human control, qualify as semi-autonomous, whereas a fully self-operated vehicle is termed autonomous.

<span class="mw-page-title-main">Automatic parking</span> Autonomous car-maneuvering system

Automatic parking is an autonomous car-maneuvering system that moves a vehicle from a traffic lane into a parking spot to perform parallel, perpendicular, or angle parking. The automatic parking system aims to enhance the comfort and safety of driving in constrained environments where much attention and experience is required to steer the car. The parking maneuver is achieved by means of coordinated control of the steering angle and speed which takes into account the actual situation in the environment to ensure collision-free motion within the available space.

The Parrot AR.Drone is a discontinued remote-controlled flying quadcopter, built by the French company Parrot.

<span class="mw-page-title-main">LibrePilot</span>

LibrePilot is a Free software unmanned aerial vehicle project for model aircraft aimed at supporting both multi-rotor craft as well as fixed-wing aircraft. Initially founded by David Ankers, Angus Peart and Vassilis Varveropoulos in late 2009, under the name OpenPilot, it was conceived as both a learning tool and to address areas the developers perceived were lacking in other small UAV platforms. In July 2015 OpenPilot, was forked to create LibrePilot.

Paparazzi is an open-source autopilot system oriented toward inexpensive autonomous aircraft. Low cost and availability enable hobbyist use in small remotely piloted aircraft. The project began in 2003, and is being further developed and used at École nationale de l'aviation civile (ENAC), a French civil aeronautics academy. Several vendors are currently producing Paparazzi autopilots and accessories.

ArduPilot is an open source, uncrewed vehicle Autopilot Software Suite, capable of controlling:

<span class="mw-page-title-main">Mobileye</span> Israeli information technology company

Mobileye Global Inc. is an Israeli autonomous driving company. It is developing self-driving technologies and advanced driver-assistance systems (ADAS) including cameras, computer chips, and software. Mobileye was acquired by Intel in 2017 and went public again in 2022.

MAVLink or Micro Air Vehicle Link is a protocol for communicating with small unmanned vehicle. It is designed as a header-only message marshaling library. MAVLink was first released early 2009 by Lorenz Meier under the LGPL license.

<span class="mw-page-title-main">3D Robotics</span> American drone company

3DR is an American company located in Berkeley, California that produces enterprise drone software for construction, engineering and mining firms, as well as government agencies.

<span class="mw-page-title-main">History of self-driving cars</span> Overview of the history of self-driving cars

Experiments have been conducted on self-driving cars since 1939; promising trials took place in the 1950s and work has proceeded since then. The first self-sufficient and truly autonomous cars appeared in the 1980s, with Carnegie Mellon University's Navlab and ALV projects in 1984 and Mercedes-Benz and Bundeswehr University Munich's Eureka Prometheus Project in 1987. Since then, numerous major companies and research organizations have developed working autonomous vehicles including Mercedes-Benz, General Motors, Continental Automotive Systems, Autoliv Inc., Bosch, Nissan, Toyota, Audi, Volvo, Vislab from University of Parma, Oxford University and Google. In July 2013, Vislab demonstrated BRAiVE, a vehicle that moved autonomously on a mixed traffic route open to public traffic.

An autonomous aircraft is an aircraft which flies under the control of automatic systems and needs no intervention from a human pilot. Most autonomous aircraft are unmanned aerial vehicle or drones. However, autonomous control systems are reaching a point where several air taxis and associated regulatory regimes are being developed.

<span class="mw-page-title-main">Tesla Autopilot</span> Suite of advanced driver-assistance system features by Tesla

Tesla Autopilot is an advanced driver-assistance system (ADAS) developed by Tesla that amounts to partial vehicle automation. Tesla provides "Base Autopilot" on all vehicles, which includes lane centering and traffic-aware cruise control. Owners may purchase an upgrade to "Enhanced Autopilot" (EA) which adds semi-autonomous navigation on limited access roadways, self-parking, and the ability to summon the car from a garage or parking spot. The company claims the features reduce accidents caused by driver negligence and fatigue from long-term driving. Collisions and deaths involving Tesla cars with Autopilot engaged have drawn the attention of the press and government agencies.

openpilot Open source driver assistance system

openpilot is an open-source, semi-automated driving system by comma.ai, Inc. When paired with comma hardware, it replaces advanced driver-assistance systems in various cars, improving over the original system. As of 2023, openpilot supports 250+ car models and has 6000+ users, having covered over 90 million miles (140,000,000 km).

References

  1. "Airframes Reference - PX4 User Guide". docs.px4.io. Retrieved 2023-03-12.
  2. "PX4 Flight Modes Overview - PX4 User Guide". docs.px4.io. Retrieved 2023-03-12.
  3. "Sensors - PX4 User Guide". docs.px4.io. Retrieved 2023-03-12.
  4. "Payloads and Cameras - PX4 User Guide". docs.px4.io. Retrieved 2023-03-12.
  5. "QGroundControl".
  6. "MAVLink". Archived from the original on 2018-08-18. Retrieved 2013-12-07.