Parthenolide

Last updated
Parthenolide
Parthenolide.svg
Names
IUPAC name
(1aR,4E,7aS,10aS,10bR)-2,3,6,7,7a,8,10a,10b-octahydro-1a,5-dimethyl-8-methylene-oxireno[9,10]cyclodeca[1,2-b]furan-9(1aH)-one
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.220.558 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
RTECS number
  • LY4220000
UNII
  • InChI=1S/C15H20O3/c1-9-5-4-8-15(3)13(18-15)12-11(7-6-9)10(2)14(16)17-12/h5,11-13H,2,4,6-8H2,1,3H3/b9-5+/t11-,12-,13-,15+/m0/s1 X mark.svgN
    Key: KTEXNACQROZXEV-SLXBATTESA-N X mark.svgN
  • Key: KTEXNACQROZXEV-SLXBATTEBY
  • InChI=1/C15H20O3/c1-9-5-4-8-15(3)13(18-15)12-11(7-6-9)10(2)14(16)17-12/h5,11-13H,2,4,6-8H2,1,3H3/b9-5+/t11-,12-,13-,15+/m0/s1
  • C/C/1=C\CC[C@@]2([C@@H](O2)[C@@H]3[C@@H](CC1)C(=C)C(=O)O3)C
Properties
C15H20O3
Molar mass 248.322 g·mol−1
Melting point 113 to 115 °C (235 to 239 °F; 386 to 388 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Parthenolide is a sesquiterpene lactone of the germacranolide class which occurs naturally in the plant feverfew ( Tanacetum parthenium ), after which it is named, and in the closely related tansy ( Tanacetum vulgare ). [1] It is found in highest concentration in the flowers and fruit. Parthenolide's molecular structure depiction is often incorrect regarding the stereochemistry of the epoxide, although X-ray single crystal structures are available. [2] [3]

Lack of solubility in water and bioavailability limits the potential of parthenolide as a drug.

In vitro research

Parthenolide has a variety of reported in vitro biological activities, including:

Related Research Articles

<span class="mw-page-title-main">Ribonucleotide reductase</span> Class of enzymes

Ribonucleotide reductase (RNR), also known as ribonucleoside diphosphate reductase (rNDP), is an enzyme that catalyzes the formation of deoxyribonucleotides from ribonucleotides. It catalyzes this formation by removing the 2'-hydroxyl group of the ribose ring of nucleoside diphosphates. This reduction produces deoxyribonucleotides. Deoxyribonucleotides in turn are used in the synthesis of DNA. The reaction catalyzed by RNR is strictly conserved in all living organisms. Furthermore, RNR plays a critical role in regulating the total rate of DNA synthesis so that DNA to cell mass is maintained at a constant ratio during cell division and DNA repair. A somewhat unusual feature of the RNR enzyme is that it catalyzes a reaction that proceeds via a free radical mechanism of action. The substrates for RNR are ADP, GDP, CDP and UDP. dTDP is synthesized by another enzyme from dTMP.

<span class="mw-page-title-main">HMG-CoA reductase</span> Mammalian protein found in Homo sapiens

HMG-CoA reductase is the rate-controlling enzyme of the mevalonate pathway, the metabolic pathway that produces cholesterol and other isoprenoids. HMGCR catalyzes the conversion of HMG-CoA to mevalonic acid, a necessary step in the biosynthesis of cholesterol. Normally in mammalian cells this enzyme is competitively suppressed so that its effect is controlled. This enzyme is the target of the widely available cholesterol-lowering drugs known collectively as the statins, which help treat dyslipidemia.

Thioredoxin reductases are enzymes that reduce thioredoxin (Trx). Two classes of thioredoxin reductase have been identified: one class in bacteria and some eukaryotes and one in animals. In bacteria TrxR also catalyzes the reduction of glutaredoxin like proteins known as NrdH. Both classes are flavoproteins which function as homodimers. Each monomer contains a FAD prosthetic group, a NADPH binding domain, and an active site containing a redox-active disulfide bond.

<span class="mw-page-title-main">Thioredoxin</span> Class of reduction–oxidation proteins

Thioredoxin is a class of small redox proteins known to be present in all organisms. It plays a role in many important biological processes, including redox signaling. In humans, thioredoxins are encoded by TXN and TXN2 genes. Loss-of-function mutation of either of the two human thioredoxin genes is lethal at the four-cell stage of the developing embryo. Although not entirely understood, thioredoxin is linked to medicine through their response to reactive oxygen species (ROS). In plants, thioredoxins regulate a spectrum of critical functions, ranging from photosynthesis to growth, flowering and the development and germination of seeds. Thioredoxins play a role in cell-to-cell communication.

Sesquiterpene lactones (SLs) are a class of sesquiterpenoids that contain a lactone ring. They are most often found in plants of the family Asteraceae. Other plant families with SLs are Umbelliferae and Magnoliaceae (magnolias). A collection of colorless, lipophilic solids, SLs are a rich source of drugs. They can be allergenic and toxic in grazing livestock causing severe neurological problems in horses. Some are also found in corals such as Maasella edwardsi.

<span class="mw-page-title-main">Trichostatin A</span> Chemical compound

Trichostatin A (TSA) is an organic compound that serves as an antifungal antibiotic and selectively inhibits the class I and II mammalian histone deacetylase (HDAC) families of enzymes, but not class III HDACs. However, there are recent reports of the interactions of this molecule with Sirt 6 protein. TSA inhibits the eukaryotic cell cycle during the beginning of the growth stage. TSA can be used to alter gene expression by interfering with the removal of acetyl groups from histones and therefore altering the ability of DNA transcription factors to access the DNA molecules inside chromatin. It is a member of a larger class of histone deacetylase inhibitors that have a broad spectrum of epigenetic activities. Thus, TSA has some potential as an anti-cancer drug. One suggested mechanism is that TSA promotes the expression of apoptosis-related genes, leading to cancerous cells surviving at lower rates, thus slowing the progression of cancer. Other mechanisms may include the activity of HDIs to induce cell differentiation, thus acting to "mature" some of the de-differentiated cells found in tumors. HDIs have multiple effects on non-histone effector molecules, so the anti-cancer mechanisms are truly not understood at this time.

<span class="mw-page-title-main">Helenalin</span> Chemical compound

Helenalin, or (-)-4-Hydroxy-4a,8-dimethyl-3,3a,4a,7a,8,9,9a-octahydroazuleno[6,5-b]furan-2,5-dione, is a toxic sesquiterpene lactone which can be found in several plants such as Arnica montana and Arnica chamissonis Helenalin is responsible for the toxicity of the Arnica spp. Although toxic, helenalin possesses some in vitro anti-inflammatory and anti-neoplastic effects. Helenalin can inhibit certain enzymes, such as 5-lipoxygenase and leukotriene C4 synthase. For this reason the compound or its derivatives may have potential medical applications.

p53 upregulated modulator of apoptosis Protein-coding gene in the species Homo sapiens

The p53 upregulated modulator of apoptosis (PUMA) also known as Bcl-2-binding component 3 (BBC3), is a pro-apoptotic protein, member of the Bcl-2 protein family. In humans, the Bcl-2-binding component 3 protein is encoded by the BBC3 gene. The expression of PUMA is regulated by the tumor suppressor p53. PUMA is involved in p53-dependent and -independent apoptosis induced by a variety of signals, and is regulated by transcription factors, not by post-translational modifications. After activation, PUMA interacts with antiapoptotic Bcl-2 family members, thus freeing Bax and/or Bak which are then able to signal apoptosis to the mitochondria. Following mitochondrial dysfunction, the caspase cascade is activated ultimately leading to cell death.

<span class="mw-page-title-main">Acute myeloblastic leukemia with maturation</span> Medical condition

Acute myeloblastic leukemia with maturation (M2) is a subtype of acute myeloid leukemia (AML).

<span class="mw-page-title-main">TXNIP</span> Mammalian protein found in Homo sapiens

Thioredoxin-interacting protein is a protein that in humans is encoded by the TXNIP gene.

<span class="mw-page-title-main">GLRX2</span> Protein-coding gene in the species Homo sapiens

Glutaredoxin 2 (GLRX2) is an enzyme that in humans encoded by the GLRX2 gene. GLRX2, also known as GRX2, is a glutaredoxin family protein and a thiol-disulfide oxidoreductase that maintains cellular thiol homeostasis. This gene consists of four exons and three introns, spanned 10 kilobase pairs, and localized to chromosome 1q31.2–31.3.

<span class="mw-page-title-main">TXN2</span> Protein-coding gene in the species Homo sapiens

Thioredoxin, mitochondrial also known as thioredoxin-2 is a protein that in humans is encoded by the TXN2 gene on chromosome 22. This nuclear gene encodes a mitochondrial member of the thioredoxin family, a group of small multifunctional redox-active proteins. The encoded protein may play important roles in the regulation of the mitochondrial membrane potential and in protection against oxidant-induced apoptosis.

<span class="mw-page-title-main">Combretastatin A-1</span> Chemical compound

Combretastatin A-1 is a combretastatin and a stilbenoid. It can be found in Combretum caffrum, the Eastern Cape South African Bushwillow tree.

<span class="mw-page-title-main">Picornain 3C</span>

Picornain 3C is a protease found in picornaviruses, which cleaves peptide bonds of non-terminal sequences. Picornain 3C’s endopeptidase activity is primarily responsible for the catalytic process of selectively cleaving Gln-Gly bonds in the polyprotein of poliovirus and with substitution of Glu for Gln, and Ser or Thr for Gly in other picornaviruses. Picornain 3C are cysteine proteases related by amino acid sequence to trypsin-like serine proteases. Picornain 3C is encoded by enteroviruses, rhinoviruses, aphtoviruses and cardioviruses. These genera of picoviruses cause a wide range of infections in humans and mammals.

Cynaropicrin is a sesquiterpene lactone of the guaianolide type found mainly in leaves of artichoke plants. It is one of the compounds that gives the artichoke its characteristic bitterness. It is found in artichoke leaves with an abundance of approximately 87 g/kg, but can hardly be found in other parts of the plant. Cynaropicrin makes up about 0.7% of leaf extracts of the artichoke. It exhibits a large diversity of bioactivities and shows properties such as anti-inflammatory, antifeedant and activation of bitter sensory receptors, but has not yet been used in medicine. Despite its pharmacologically beneficial properties, it can be toxic in higher doses. The compound has attracted attention in recent years as a potential anticancer drug.

<span class="mw-page-title-main">Pracinostat</span> Chemical compound

Pracinostat (SB939) is an orally bioavailable, small-molecule histone deacetylase (HDAC) inhibitor based on hydroxamic acid with potential anti-tumor activity characterized by favorable physicochemical, pharmaceutical, and pharmacokinetic properties.

AI-10-49 is a small molecule inhibitor of leukemic oncoprotein CBFβ-SMHHC developed by the laboratory of John Bushweller with efficacy demonstrated by the laboratories of Lucio H. Castilla and Monica Guzman. AI-10-49 allosterically binds to CBFβ-SMMHC and disrupts protein-protein interaction between CBFβ-SMMHC and tumor suppressor RUNX1. This inhibitor is under development as an anti-leukemic drug.

<span class="mw-page-title-main">Arglabin</span> Chemical compound

Arglabin is a sesquiterpene lactone belonging to the guaianolide subclass bearing a 5,7,5-tricyclic ring system which is known to inhibit farnesyl transferase. It is characterized by an epoxide on the cycloheptane as well as an exocyclic methylene group that is conjugated with the carbonyl of the lactone. Arglabin is extracted from Artemisia glabella, a species of wormwood, found in the Karaganda Region of Kazakhstan. Arglabin and its derivatives are biologically active and demonstrate promising antitumor activity and cytoxocity against varying tumor cell lines.

<span class="mw-page-title-main">Epigenetic priming</span> Type of modification to a cells epigenome

Epigenetic priming is the modification to a cell's epigenome whereby specific chromatin domains within a cell are converted from a closed state to an open state, usually as the result of an external biological trigger or pathway, allowing for DNA access by transcription factors or other modification mechanisms. The action of epigenetic priming for a certain region of DNA dictates how other gene regulation mechanisms will be able to act on the DNA later in the cell’s life. Epigenetic priming has been chiefly investigated in neuroscience and cancer research, as it has been found to play a key role in memory formation within neurons and tumor-suppressor gene activation in cancer treatment respectively.

<span class="mw-page-title-main">Xanthatin</span> Chemical compound

Xanthatin, or (3aR,7S,8aS)-7-methyl-3-methylidene-6-[(E)-3-oxobut-1-enyl]-4,7,8,8a-tetrahydro-3aH-cyclohepta[b]furan-2-one (C15H18O3) is a major bioactive compound found in the leaves of the Xanthium strumarium (Asteracae) plant. It is classified as a natural sesquiterpene lactone. Xanthatin is believed to have anti-inflammatory, anti-tumour, anti-microbial, and anti-parasitic properties hence it is being researched for potential use in treatment of cancer and autoimmune diseases. While it has been used in traditional medicine for decades, its mechanisms and modern use haven’t been fully understood yet.

References

  1. Onozato, Thelma; Nakamura, Celso Vataru; Garcia Cortez, Diógenes Aparício; Dias Filho, Benedito Prado; Ueda-Nakamura, Tânia (2009). "Tanacetum vulgare: antiherpes virus activity of crude extract and the purified compound parthenolide". Phytother Res. 23 (6): 791–6. doi: 10.1002/ptr.2638 . PMID   19152371. S2CID   3547899.
  2. Quick, Andrew; Rogers, Donald (1976). "Crystal and molecular structure of parthenolide [4,5-epoxygermacra-1(10),11(13)-dien-12,6-olactone]". Journal of the Chemical Society, Perkin Transactions 2 (4): 465. doi:10.1039/p29760000465. ISSN   0300-9580.
  3. Long, Jing; Ding, Ya-Hui; Wang, Pan-Pan; Zhang, Quan; Chen, Yue (2013-10-18). "Protection-Group-Free Semisyntheses of Parthenolide and Its Cyclopropyl Analogue". The Journal of Organic Chemistry. 78 (20): 10512–10518. doi:10.1021/jo401606q. ISSN   0022-3263. PMID   24047483.
  4. Rajendran P, Ho E, Williams DE, Dashwood RH (2011). "Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells". Clinical Epigenetics. 3 (1): 4. doi: 10.1186/1868-7083-3-4 . PMC   3255482 . PMID   22247744.
  5. López-Franco O, Hernández-Vargas P, Ortiz-Muñoz G, Sanjuán G, Suzuki Y, Ortega L, Blanco J, Egido J, Gómez-Guerrero C (August 2006). "Parthenolide modulates the NF-kappaB-mediated inflammatory responses in experimental atherosclerosis". Arteriosclerosis, Thrombosis, and Vascular Biology. 26 (8): 1864–70. doi: 10.1161/01.ATV.0000229659.94020.53 . PMID   16741149.
  6. Guzman ML, Rossi RM, Karnischky L, Li X, Peterson DR, Howard DS, Jordan CT (June 2005). "The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells". Blood. 105 (11): 4163–9. doi:10.1182/blood-2004-10-4135. PMC   1895029 . PMID   15687234.
  7. Tiuman TS, Ueda-Nakamura T, Garcia Cortez DA, Dias Filho BP, Morgado-Díaz JA, de Souza W, Nakamura CV (January 2005). "Antileishmanial activity of parthenolide, a sesquiterpene lactone isolated from Tanacetum parthenium". Antimicrobial Agents and Chemotherapy. 49 (1): 176–82. doi:10.1128/AAC.49.11.176-182.2005. PMC   538891 . PMID   15616293.
  8. Miglietta A, Bozzo F, Gabriel L, Bocca C (October 2004). "Microtubule-interfering activity of parthenolide". Chemico-Biological Interactions. 149 (2–3): 165–73. doi:10.1016/j.cbi.2004.07.005. PMID   15501437.
  9. Sun Y, Zang Z, Zhong L, Wu M, Su Q, Gao X, Zan W, Lin D, Zhao Y, Zhang Z (2013). "Identification of adiponectin receptor agonist utilizing a fluorescence polarization based high throughput assay". PLOS ONE. 8 (5): e63354. Bibcode:2013PLoSO...863354S. doi: 10.1371/journal.pone.0063354 . PMC   3653934 . PMID   23691032.
  10. Duan D, Zhang J, Yao J, Liu Y, Fang J (May 2016). "Targeting Thioredoxin Reductase by Parthenolide Contributes to Inducing Apoptosis of HeLa Cells". The Journal of Biological Chemistry. 291 (19): 10021–31. doi: 10.1074/jbc.M115.700591 . PMC   4858956 . PMID   27002142.