Penrose triangle

Last updated
Penrose triangle Penrose-dreieck.svg
Penrose triangle

The Penrose triangle, also known as the Penrose tribar, the impossible tribar, [1] or the impossible triangle, [2] is a triangular impossible object, an optical illusion consisting of an object which can be depicted in a perspective drawing, but cannot exist as a solid object. It was first created by the Swedish artist Oscar Reutersvärd in 1934. [3] Independently from Reutersvärd, the triangle was devised and popularized in the 1950s by psychiatrist Lionel Penrose and his son, prominent Nobel Prize-winning mathematician Sir Roger Penrose, who described it as "impossibility in its purest form". [4] It is featured prominently in the works of artist M. C. Escher, whose earlier depictions of impossible objects partly inspired it.

Contents

Description

A rotating Penrose triangle model to show illusion. At the moment of illusion, there appears to be a pair of purple faces (one partially occluded) joined at right angles, but these are actually parallel faces, and the partially occluded face is internal, not external. Penrose-triangle-4color-rotation.gif
A rotating Penrose triangle model to show illusion. At the moment of illusion, there appears to be a pair of purple faces (one partially occluded) joined at right angles, but these are actually parallel faces, and the partially occluded face is internal, not external.

The tribar/triangle appears to be a solid object, made of three straight beams of square cross-section which meet pairwise at right angles at the vertices of the triangle they form. The beams may be broken, forming cubes or cuboids.

This combination of properties cannot be realized by any three-dimensional object in ordinary Euclidean space. Such an object can exist in certain Euclidean 3-manifolds. [5] There also exist three-dimensional solid shapes each of which, when viewed from a certain angle, appears the same as the 2-dimensional depiction of the Penrose triangle on this page (such as – for example – the adjacent image depicting a sculpture in Perth, Australia). The term "Penrose Triangle" can refer to the 2-dimensional depiction or the impossible object itself.

If a line is traced around the Penrose triangle, a 4-loop Möbius strip is formed. [6]

Depictions

A 3D-printed version of the Reutersvard Triangle illusion Penrosetrianglemodel.jpg
A 3D-printed version of the Reutersvärd Triangle illusion

M.C. Escher's lithograph Waterfall (1961) depicts a watercourse that flows in a zigzag along the long sides of two elongated Penrose triangles, so that it ends up two stories higher than it began. The resulting waterfall, forming the short sides of both triangles, drives a water wheel. Escher points out that in order to keep the wheel turning, some water must occasionally be added to compensate for evaporation.

Sculptures

See also

Related Research Articles

<span class="mw-page-title-main">Euclidean geometry</span> Mathematical model of the physical space

Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated earlier, Euclid was the first to organize these propositions into a logical system in which each result is proved from axioms and previously proved theorems.

<span class="mw-page-title-main">M. C. Escher</span> Dutch graphic artist (1898–1972)

Maurits Cornelis Escher was a Dutch graphic artist who made woodcuts, lithographs, and mezzotints, many of which were inspired by mathematics. Despite wide popular interest, for most of his life Escher was neglected in the art world, even in his native Netherlands. He was 70 before a retrospective exhibition was held. In the late twentieth century, he became more widely appreciated, and in the twenty-first century he has been celebrated in exhibitions around the world.

<span class="mw-page-title-main">Möbius strip</span> Non-orientable surface with one edge

In mathematics, a Möbius strip, Möbius band, or Möbius loop is a surface that can be formed by attaching the ends of a strip of paper together with a half-twist. As a mathematical object, it was discovered by Johann Benedict Listing and August Ferdinand Möbius in 1858, but it had already appeared in Roman mosaics from the third century CE. The Möbius strip is a non-orientable surface, meaning that within it one cannot consistently distinguish clockwise from counterclockwise turns. Every non-orientable surface contains a Möbius strip.

<span class="mw-page-title-main">Optical illusion</span> Visually perceived images that differ from objective reality

In visual perception, an optical illusion is an illusion caused by the visual system and characterized by a visual percept that arguably appears to differ from reality. Illusions come in a wide variety; their categorization is difficult because the underlying cause is often not clear but a classification proposed by Richard Gregory is useful as an orientation. According to that, there are three main classes: physical, physiological, and cognitive illusions, and in each class there are four kinds: Ambiguities, distortions, paradoxes, and fictions. A classical example for a physical distortion would be the apparent bending of a stick half immerged in water; an example for a physiological paradox is the motion aftereffect. An example for a physiological fiction is an afterimage. Three typical cognitive distortions are the Ponzo, Poggendorff, and Müller-Lyer illusion. Physical illusions are caused by the physical environment, e.g. by the optical properties of water. Physiological illusions arise in the eye or the visual pathway, e.g. from the effects of excessive stimulation of a specific receptor type. Cognitive visual illusions are the result of unconscious inferences and are perhaps those most widely known.

<span class="mw-page-title-main">Impossible object</span> Type of optical illusion

An impossible object is a type of optical illusion that consists of a two-dimensional figure which is instantly and naturally understood as representing a projection of a three-dimensional object but cannot exist as a solid object. Impossible objects are of interest to psychologists, mathematicians and artists without falling entirely into any one discipline.

<span class="mw-page-title-main">Impossible cube</span> 2D drawing of impossible 3D object

The impossible cube or irrational cube is an impossible object invented by M.C. Escher for his print Belvedere. It is a two-dimensional figure that superficially resembles a perspective drawing of a three-dimensional cube, with its features drawn inconsistently from the way they would appear in an actual cube.

<span class="mw-page-title-main">Tessellation</span> Tiling of a plane in mathematics

A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of geometries.

<span class="mw-page-title-main">Penrose stairs</span> Impossible object

The Penrose stairs or Penrose steps, also dubbed the impossible staircase, is an impossible object created by Oscar Reutersvärd in 1937 and later independently discovered and made popular by Lionel Penrose and his son Roger Penrose. A variation on the Penrose triangle, it is a two-dimensional depiction of a staircase in which the stairs make four 90-degree turns as they ascend or descend yet form a continuous loop, so that a person could climb them forever and never get any higher. This is clearly impossible in three-dimensional Euclidean geometry but possible in some non-Euclidean geometry like in nil geometry.

<i>Reptiles</i> (M. C. Escher) 1943 lithograph by M. C. Escher

Reptiles is a lithograph print by the Dutch artist M. C. Escher first printed in March 1943. It touches on the theme found in much of his work of mathematics in art.

<i>Waterfall</i> (M. C. Escher) Lithograph print by M. C. Escher

Waterfall is a lithograph by the Dutch artist M. C. Escher, first printed in October 1961. It shows a perpetual motion machine where water from the base of a waterfall appears to run downhill along the water path before reaching the top of the waterfall.

<span class="mw-page-title-main">Oscar Reutersvärd</span> Swedish artist (1915–2002)

Oscar Reutersvärd was a Swedish graphic artist, who in 1934 pioneered the art of 3D drawings that may initially appear feasible, yet cannot be physically constructed. He is sometimes described as "the father of the impossible figure", although there are much older examples, e.g. Hogarth's Satire on False Perspective.

<span class="mw-page-title-main">Anamorphosis</span> Optical distortion used in art

Anamorphosis is a distorted projection that requires the viewer to occupy a specific vantage point, use special devices, or both to view a recognizable image. It is used in painting, photography, sculpture and installation, toys, and film special effects. The word is derived from the Greek prefix ana-, meaning "back" or "again", and the word morphe, meaning "shape" or "form". Extreme anamorphosis has been used by artists to disguise caricatures, erotic and scatological scenes, and other furtive images from a casual spectator, while revealing an undistorted image to the knowledgeable viewer.

<span class="mw-page-title-main">Parallel projection</span> Projection of a 3D object onto a plane via parallel rays

In three-dimensional geometry, a parallel projection is a projection of an object in three-dimensional space onto a fixed plane, known as the projection plane or image plane, where the rays, known as lines of sight or projection lines, are parallel to each other. It is a basic tool in descriptive geometry. The projection is called orthographic if the rays are perpendicular (orthogonal) to the image plane, and oblique or skew if they are not.

<span class="mw-page-title-main">Roger Shepard</span> American psychologist (1929–2020)

Roger Newland Shepard was an American cognitive scientist and author of the "universal law of generalization" (1987). He was considered a father of research on spatial relations. He studied mental rotation, and was an inventor of non-metric multidimensional scaling, a method for representing certain kinds of statistical data in a graphical form that can be comprehended by humans. The optical illusion called Shepard tables and the auditory illusion called Shepard tones are named for him.

<span class="mw-page-title-main">Exceptional object</span>

Many branches of mathematics study objects of a given type and prove a classification theorem. A common theme is that the classification results in a number of series of objects and a finite number of exceptions — often with desirable properties — that do not fit into any series. These are known as exceptional objects. In many cases, these exceptional objects play a further and important role in the subject. Furthermore, the exceptional objects in one branch of mathematics often relate to the exceptional objects in others.

<i>Ascending and Descending</i> 1960 lithograph by M. C. Escher

Ascending and Descending is a lithograph print by the Dutch artist M. C. Escher first printed in March 1960. The original print measures 14 in × 11+14 in. The lithograph depicts a large building roofed by a never-ending staircase. Two lines of identically dressed men appear on the staircase, one line ascending while the other descends. Two figures sit apart from the people on the endless staircase: one in a secluded courtyard, the other on a lower set of stairs. While most two-dimensional artists use relative proportions to create an illusion of depth, Escher here and elsewhere uses conflicting proportions to create the visual paradox.

<span class="mw-page-title-main">Mathematics and art</span> Relationship between mathematics and art

Mathematics and art are related in a variety of ways. Mathematics has itself been described as an art motivated by beauty. Mathematics can be discerned in arts such as music, dance, painting, architecture, sculpture, and textiles. This article focuses, however, on mathematics in the visual arts.

<i>Circle Limit III</i> 1959 woodcut by M. C. Escher

Circle Limit III is a woodcut made in 1959 by Dutch artist M. C. Escher, in which "strings of fish shoot up like rockets from infinitely far away" and then "fall back again whence they came".

<span class="mw-page-title-main">Symmetry (geometry)</span> Geometrical property

In geometry, an object has symmetry if there is an operation or transformation that maps the figure/object onto itself. Thus, a symmetry can be thought of as an immunity to change. For instance, a circle rotated about its center will have the same shape and size as the original circle, as all points before and after the transform would be indistinguishable. A circle is thus said to be symmetric under rotation or to have rotational symmetry. If the isometry is the reflection of a plane figure about a line, then the figure is said to have reflectional symmetry or line symmetry; it is also possible for a figure/object to have more than one line of symmetry.

<span class="mw-page-title-main">Binary tiling</span> Tiling of the hyperbolic plane

In geometry, the binary tiling is a tiling of the hyperbolic plane, resembling a quadtree over the Poincaré half-plane model of the hyperbolic plane. It was first studied mathematically in 1974 by Károly Böröczky. However, a closely related tiling was used earlier in a 1957 print by M. C. Escher.

References

  1. Pappas, Theoni (1989). "The Impossible Tribar". The Joy of Mathematics: Discovering Mathematics All Around You. San Carlos, California: Wide World Publ./Tetra. p. 13.
  2. Brouwer, James R.; Rubin, David C. (June 1979). "A simple design for an impossible triangle". Perception . 8 (3): 349–350. doi:10.1068/p080349. PMID   534162. S2CID   41895719.
  3. Ernst, Bruno (1986). "Escher's impossible figure prints in a new context". In Coxeter, H. S. M.; Emmer, M.; Penrose, R.; Teuber, M. L. (eds.). M. C. Escher Art and Science: Proceedings of the International Congress on M. C. Escher, Rome, Italy, 26–28 March, 1985. North-Holland. pp. 125–134. See in particular p. 131.
  4. Penrose, L. S.; Penrose, R. (February 1958). "Impossible objects: a special type of visual illusion". British Journal of Psychology . 49 (1): 31–33. doi:10.1111/j.2044-8295.1958.tb00634.x. PMID   13536303.
  5. Francis, George K. (1988). "Chapter 4: The impossible tribar". A Topological Picturebook. Springer. pp. 65–76. doi:10.1007/978-0-387-68120-7_4. ISBN   0-387-96426-6. See in particular p. 68, where Francis attributes this observation to John Stillwell.
  6. Gardner, Martin (August 1978). "Mathematical Games: A Möbius band has a finite thickness, and so it is actually a twisted prism". Scientific American . 239 (2): 18–26. doi:10.1038/scientificamerican1278-18. JSTOR   24960346.
  7. Федоров, Ю. (1972). "Невозможное-Возможно". Техника Молодежи. 4: 20–21.