Periallocortex

Last updated
Periallocortex
Details
Part of Allocortex
Identifiers
Latin Periallocortex
NeuroNames 2315

Anatomical terms of neuroanatomy

Periallocortex is one of three subtypes of allocortex, the other two subtypes being paleocortex and archicortex. The periallocortex is formed at transition areas where any of the other two subtypes of allocortex borders with the neocortex (which is also called isocortex). [1]

The allocortex is one of the two types of cerebral cortex, the other being the neocortex. It is characterized by having just three or four cell layers, in contrast with the six layers of the neocortex, and takes up a much smaller area than the neocortex. There are three subtypes of allocortex: the paleocortex, the archicortex, and the periallocortex – a transitional zone between the neocortex and the allocortex.

Paleocortex The part of the cerebral cortex or pallium that is phylogenetically younger than archicortex (or archipallium) but older than neocortex (or neopallium)

In anatomy of animals, the paleocortex, or paleopallium is a region within the telencephalon in the brain which is older in an evolutionary sense than the archicortex and the neocortex.

Archicortex Phylogenetically the oldest part of the cerebral cortex or pallium

In anatomy of animals, the archicortex or archipallium is the phylogenetically oldest region of the brain's pallium or cortex.

Thus, the periallocortex is also subdivided to two subtypes. One subtype is called peripaleocortex, which is formed at borders between paleocortex and neocortex. Areas considered to belong to peripaleocortex are for example anterior insular cortex. [2] Another subtype of periallocortex is called periarchicortex. It is formed at borders between archicortex and neocortex. Areas considered to belong to periarchicortex include entorhinal cortex, perirhinal cortex, presubiculum, parasubiculum, retrosplenial cortex, subcallosal area and subgenual area. [3]

Peripaleocortex is one of two subtypes of periallocortex, the other being periarchicortex. Peripaleocortex is formed at borders between isocortex (neocortex) and paleocortex. It shows slow histological transition from the three-layered structure characteristic of paleocortex to the typical six-layered structure characteristic of isocortex. The main peripaleocortex area is anterior insular cortex.

Insular cortex

In each hemisphere of the mammalian brain the insular cortex is a portion of the cerebral cortex folded deep within the lateral sulcus.

Periarchicortex is one of two subtypes of periallocortex, the other being peripaleocortex. It is formed at borders between archicortex and isocortex and shows slow histological transition from the four-layered structure typical for archicortex to the six-layered structure typical for isocortex.

No one allocortex or even periallocortex area borders, contacts or transitions immediately to the so-called true isocortex. Instead, they border and slowly transition to another transitional area from the neocortex side, called proisocortex, which then slowly transitions to the true isocortex. Thus, at borders between isocortex and allocortex there are two transitional areas, one from allocortex side and histologically more resembling allocortex, so it is called periallocortex, and another from isocortex side, histologically more resembling true isocortex, so it is called proisocortex. [4]

Proisocortex or pro-isocortex is one of two subtypes of cortical areas in the areas belonging to the neocortex. The other subtype is termed the true isocortex. Proisocortical areas are transitional areas placed between areas of true isocortex and areas of periallocortex. The histological structure of proisocortex is also transitional between true isocortex and either peripaleocortex or periarchicortex, depending on with which subtype of periallocortex the given proisocortical area borders.

Those two transitional areas (one from isocortex or neocortex side, called proisocortex, and another from allocortex side, called periallocortex) together form what is called mesocortex. [5]

Mesocortex is the transitional areas of the cerebral cortex, formed at borders between true isocortex and true allocortex. Parts of mesocortex that lie closer to the true isocortex and have more resemblance to the isocortex in their cytoarchitectonics and histology, are called proisocortex. Parts of mesocortex that lie closer to the true allocortex and have more resemblance to the allocortex in their cytoarchitectonics and histology, are called periallocortex.

Related Research Articles

Central nervous system part of the nervous system consisting of the brain and spinal cord

The central nervous system (CNS) is the part of the nervous system consisting of the brain and spinal cord. The CNS is so named because it integrates the received information and coordinates and influences the activity of all parts of the bodies of bilaterally symmetric animals—that is, all multicellular animals except sponges and radially symmetric animals such as jellyfish—and it contains the majority of the nervous system. Many consider the retina and the optic nerve, as well as the olfactory nerves and olfactory epithelium as parts of the CNS, synapsing directly on brain tissue without intermediate ganglia. As such, the olfactory epithelium is the only central nervous tissue in direct contact with the environment, which opens up for therapeutic treatments. The CNS is contained within the dorsal body cavity, with the brain housed in the cranial cavity and the spinal cord in the spinal canal. In vertebrates, the brain is protected by the skull, while the spinal cord is protected by the vertebrae. The brain and spinal cord are both enclosed in the meninges. Within the CNS, the interneuronal space is filled with a large amount of supporting non-nervous cells called neuroglial cells.

Cerebral cortex Part of a mammals brain

The cerebral cortex, also known as the cerebral mantle, is the outer layer of neural tissue of the cerebrum of the brain, in humans and other mammals. It is separated into two cortices, by the longitudinal fissure that divides the cerebrum into the left and right cerebral hemispheres. The two hemispheres are joined beneath the cortex by the corpus callosum. The cerebral cortex is the largest site of neural integration in the central nervous system. It plays a key role in memory, attention, perception, awareness, thought, language, and consciousness.

Neuropil

Neuropil is any area in the nervous system composed of mostly unmyelinated axons, dendrites and glial cell processes that forms a synaptically dense region containing a relatively low number of cell bodies. The most prevalent anatomical region of neuropil is the brain which, although not completely composed of neuropil, does have the largest and highest synaptically-concentrated areas of neuropil in the body. For example, the neocortex and olfactory bulb both contain neuropil.

Brodmann area

A Brodmann area is a region of the cerebral cortex, in the human or other primate brain, defined by its cytoarchitecture, or histological structure and organization of cells.

Neocortex Mammalian structure involved in higher-order brain functions

The neocortex, also called the neopallium and isocortex, is the part of the mammalian brain involved in higher-order brain functions such as sensory perception, cognition, generation of motor commands, spatial reasoning and language.

Rhinencephalon

In animal anatomy, the rhinencephalon also called the smell-brain or olfactory brain is a part of the brain involved with smell. It forms the paleocortex and is rudimentary in the human brain.

The amygdalofugal pathway is one of the three major efferent pathways of the amygdala, meaning that it is one of the three principal pathways by which fibers leave the amygdala. It leads from the basolateral nucleus and central nucleus of the amygdala. The amygdala is a limbic structure in the medial temporal lobe of the brain. The other main efferent pathways from the amygdala are the stria terminalis and anterior commissure.

Paralimbic cortex

The paralimbic cortex is an area of three-layered cortex that includes the following regions: the piriform cortex, entorhinal cortex, the parahippocampal cortex on the medial surface of the temporal lobe, and the cingulate cortex just above the corpus callosum.

Percival Sylvester Bailey was an American neuropathologist, neurosurgeon and psychiatrist who was a native of rural southern Illinois.

Pallium (neuroanatomy) layers of nerve cells on the surface of cerebral hemispheres of chordate animals

In neuroanatomy, pallium refers to the layers of grey and white matter that cover the upper surface of the cerebrum in vertebrates. The non-pallial part of the telencephalon builds the subpallium. In basal vertebrates the pallium is a relatively simple three-layered structure, encompassing 3-4 histogenetically distinct domains, plus the olfactory bulb. It used to be thought that pallium equals cortex and subpallium equals telencephalic nuclei, but it has turned out, according to comparative evidence provided by molecular markers, that the pallium develops both cortical structures and pallial nuclei, whereas the subpallium develops striatal, pallidal, diagonal-innominate and preoptic nuclei, plus the corticoid structure of the olfactory tuberculum. In mammals, the cortical part of the pallium registers a definite evolutionary step-up in complexity, forming the cerebral cortex, most of which consists of a progressively expanded six-layered portion isocortex, with simpler three-layered cortical regions allocortex at the margins. The allocortex subdivides into hippocampal allocortex, medially, and olfactory allocortex, laterally.

Agranular insula is a portion of the cerebral cortex defined on the basis of internal structure in the human, the macaque, the rat, and the mouse. Classified as allocortex (periallocortex), it is in primates distinguished from adjacent neocortex (proisocortex) by absence of the external granular layer (II) and of the internal granular layer (IV). It occupies the anterior part of the insula, the posterior portion of the orbital gyri and the medial part of the temporal pole. In rodents it is located on the ventrolateral surface of the cortex rostrally, between the piriform area ventrally and the gustatory area or the visceral area dorsally.

Granular insular cortex refers to a portion of the cerebral cortex defined on the basis of internal structure in the human and macaque, the rat, and the mouse. Classified as neocortex, it is in primates distinguished from adjacent allocortex (periallocortex) by the presence of granular layers – external granular layer (II) and internal granular layer (IV) – and by differentiation of the external pyramidal layer (III) into sublayers. In primates it occupies the posterior part of the insula. In rodents it is located on the lateral surface of the cortex rostrally, dorsal to the gustatory area or, more caudally, dorsal to the agranular insula.

The neomammalian brain is one of three aspects of Paul MacLean’s Triune Theory of the human brain. MacLean was an American physician and neuroscientist that formulated his model in the 1960s, which was published in his own 1990 book ‘The Triune Brain in Evolution’ 2. MacLean’s three-part theory explores how the human brain has evolved from ancestors over millions of years, consisting of the reptilian, paleomammalian and neomammalian complexes. 25 MacLean proposes that the neomammalian complex is only found in higher order mammals,4 for example, the human brain, accounting for increased cognitive ability such as motor control, memory, improved reasoning and complex decision making 1

 

References

  1. "Periallocortex". BrainInfo. University of Washington. Retrieved 13 October 2017.
  2. "Peripaleocortex". BrainInfo. University of Washington. Retrieved 13 October 2017.
  3. "Periarchicortex". BrainInfo. University of Washington. Retrieved 13 October 2017.
  4. "Proisocortex". BrainInfo. University of Washington. Retrieved 13 October 2017.
  5. "Mesocortex". BrainInfo. University of Washington. Retrieved 13 October 2017.