Phrap is a widely used program for DNA sequence assembly. It is part of the Phred-Phrap-Consed package.
Phrap was originally developed by Prof. Phil Green for the assembly of cosmids in large-scale cosmid shotgun sequencing within the Human Genome Project. Phrap has been widely used for many different sequence assembly projects, including bacterial genome assemblies and EST assemblies.
Phrap was written as a command line program for easy integration into automated data workflows in genome sequencing centers. For users who want to use Phrap from a graphical interface, the commercial programs MacVector (for Mac OS X only) and CodonCode Aligner (for Mac OS X and Microsoft Windows) are available.
A detailed (albeit partially outdated) description of the Phrap algorithms can be found in the Phrap documentation. A recurring thread within the Phrap algorithms is the use of Phred quality scores. Phrap used quality scores to mitigate a problem that other assembly programs had struggled with at the beginning of the Human Genome Project: correctly assembling frequent imperfect repeats, in particular Alu sequences. Phrap uses quality scores to tell if any observed differences in repeated regions are likely to be due to random ambiguities in the sequencing process, or more likely to be due to the sequences being from different copies of the Alu repeat. Typically, Phrap had no problems differentiating between the different Alu copies in a cosmid, and to correctly assemble the cosmids (or, later, BACs). The logic is simple: a base call with a high probability of being correct should never be aligned with another high quality but different base. However, Phrap does not rule out such alignments entirely, and the cross_match alignment gap and alignment penalties used while looking for local alignments are not always optimal for typical sequencing errors and a search for overlapping (contiguous) sequences. (Affine gaps are helpful for homology searches but not usually for sequencing error alignment). Phrap attempts to classify chimeras, vector sequences and low quality end regions all in a single alignment and will sometimes make mistakes. Furthermore, Phrap has more than one round of assembly building internally and later rounds are less stringent - Greedy algorithm.
These design choices were helpful in the 1990s when the program was originally written (at Washington University in St. Louis) but are less so now. Phrap appears error prone in comparison with newer assemblers like Euler and cannot use mate-pair information directly to guide assembly and assemble past perfect repeats. Phrap is not free software so it has not been extended and enhanced like less restricted open-source software Sequence assembly.
Another use of Phred quality scores by Phrap that contributed to the program's success was the determination of consensus sequences using sequence qualities. In effect, Phrap automated a step that was a major bottleneck in the early phases of the Human Genome Project: to determine the correct consensus sequence at all positions where the assembled sequences had discrepant bases. This approach had been suggested by Bonfield and Staden in 1995, [1] and was implemented and further optimized in Phrap. Basically, at any consensus position with discrepant bases, Phrap examines the quality scores of the aligned sequences to find the highest quality sequence. In the process, Phrap takes confirmation of local sequence by other reads into account, after considering direction and sequencing chemistry.
The mathematics of this approach were rather simple, since Phred quality scores are logarithmically linked to error probabilities. This means that the quality scores of confirming reads can simply be added, as long as the error distributions are sufficiently independent. To satisfy this independence criterion, reads must typically be in different direction, since peak patterns that cause base calling errors are often identical when a region is sequenced several times in the same direction.
If a consensus base is covered by both high-quality sequence and (discrepant) low-quality sequence, Phrap's selection of the higher quality sequence will in most cases be correct. Phrap then assigns the confirmed base quality to the consensus sequence base. This makes it easy to (a) find consensus regions that are not covered by high quality sequence (which will also have low quality), and (b) to quickly calculate a reasonably accurate estimate of the error rate of the consensus sequence. This information can then be used to direct finishing efforts, for example re-sequencing of problem regions.
The combination of accurate, base-specific quality scores and a quality-based consensus sequence was a critical element in the success of the Human Genome Project. Phred and Phrap, and similar programs who picked up on the ideas pioneered by these two programs, enabled the assembly of large parts of the human genome (and many other genomes) at an accuracy that was substantially higher (less than 1 error in 10,000 bases) than the typical accuracy of carefully hand-edited sequences that had been submitted to the GenBank database before. [2]
In genetics, shotgun sequencing is a method used for sequencing random DNA strands. It is named by analogy with the rapidly expanding, quasi-random shot grouping of a shotgun.
A DNA sequencer is a scientific instrument used to automate the DNA sequencing process. Given a sample of DNA, a DNA sequencer is used to determine the order of the four bases: G (guanine), C (cytosine), A (adenine) and T (thymine). This is then reported as a text string, called a read. Some DNA sequencers can be also considered optical instruments as they analyze light signals originating from fluorochromes attached to nucleotides.
In bioinformatics, sequence assembly refers to aligning and merging fragments from a longer DNA sequence in order to reconstruct the original sequence. This is needed as DNA sequencing technology might not be able to 'read' whole genomes in one go, but rather reads small pieces of between 20 and 30,000 bases, depending on the technology used. Typically, the short fragments (reads) result from shotgun sequencing genomic DNA, or gene transcript (ESTs).
Sanger sequencing is a method of DNA sequencing that involves electrophoresis and is based on the random incorporation of chain-terminating dideoxynucleotides by DNA polymerase during in vitro DNA replication. After first being developed by Frederick Sanger and colleagues in 1977, it became the most widely used sequencing method for approximately 40 years. It was first commercialized by Applied Biosystems in 1986. More recently, higher volume Sanger sequencing has been replaced by next generation sequencing methods, especially for large-scale, automated genome analyses. However, the Sanger method remains in wide use for smaller-scale projects and for validation of deep sequencing results. It still has the advantage over short-read sequencing technologies in that it can produce DNA sequence reads of >500 nucleotides and maintains a very low error rate with accuracies around 99.99%. Sanger sequencing is still actively being used in efforts for public health initiatives such as sequencing the spike protein from SARS-CoV-2 as well as for the surveillance of norovirus outbreaks through the Center for Disease Control and Prevention's (CDC) CaliciNet surveillance network.
A Phred quality score is a measure of the quality of the identification of the nucleobases generated by automated DNA sequencing. It was originally developed for the computer program Phred to help in the automation of DNA sequencing in the Human Genome Project. Phred quality scores are assigned to each nucleotide base call in automated sequencer traces. The FASTQ format encodes phred scores as ASCII characters alongside the read sequences. Phred quality scores have become widely accepted to characterize the quality of DNA sequences, and can be used to compare the efficacy of different sequencing methods. Perhaps the most important use of Phred quality scores is the automatic determination of accurate, quality-based consensus sequences.
In the fields of bioinformatics and computational biology, Genome survey sequences (GSS) are nucleotide sequences similar to expressed sequence tags (ESTs) that the only difference is that most of them are genomic in origin, rather than mRNA.
Velvet is an algorithm package that has been designed to deal with de novo genome assembly and short read sequencing alignments. This is achieved through the manipulation of de Bruijn graphs for genomic sequence assembly via the removal of errors and the simplification of repeated regions. Velvet has also been implemented in commercial packages, such as Sequencher, Geneious, MacVector and BioNumerics.
Consed is a program for viewing, editing, and finishing DNA sequence assemblies. Originally developed for sequence assemblies created with phrap, recent versions also support other sequence assembly programs like Newbler.
Phred is a computer program for base calling, that is to say, identifying a nucleobase sequence from fluorescence "trace" data generated by an automated DNA sequencer that uses electrophoresis and 4-fluorescent dye method. When originally developed, Phred produced significantly fewer errors in the data sets examined than other methods, averaging 40–50% fewer errors. Phred quality scores have become widely accepted to characterize the quality of DNA sequences, and can be used to compare the efficacy of different sequencing methods.
The Staden Package is computer software, a set of tools for DNA sequence assembly, editing, and sequence analysis. It is open-source software, released under a BSD 3-clause license.
FASTQ format is a text-based format for storing both a biological sequence and its corresponding quality scores. Both the sequence letter and quality score are each encoded with a single ASCII character for brevity.
SOAP is a suite of bioinformatics software tools from the BGI Bioinformatics department enabling the assembly, alignment, and analysis of next generation DNA sequencing data. It is particularly suited to short read sequencing data.
In bioinformatics, hybrid genome assembly refers to utilizing various sequencing technologies to achieve the task of assembling a genome from fragmented, sequenced DNA resulting from shotgun sequencing. Genome assembly presents one of the most challenging tasks in genome sequencing as most modern DNA sequencing technologies can only produce reads that are, on average, 25-300 base pairs in length. This is orders of magnitude smaller than the average size of a genome. This assembly is computationally difficult and has some inherent challenges, one of these challenges being that genomes often contain complex tandem repeats of sequences that can be thousands of base pairs in length. These repeats can be long enough that second generation sequencing reads are not long enough to bridge the repeat, and, as such, determining the location of each repeat in the genome can be difficult. Resolving these tandem repeats can be accomplished by utilizing long third generation sequencing reads, such as those obtained using the PacBio RS DNA sequencer. These sequences are, on average, 10,000-15,000 base pairs in length and are long enough to span most repeated regions. Using a hybrid approach to this process can increase the fidelity of assembling tandem repeats by being able to accurately place them along a linear scaffold and make the process more computationally efficient.
Base calling is the process of assigning nucleobases to chromatogram peaks or electrical current changes resulting from nucleotides passing through a nanopore. One computer program for accomplishing this job is Phred, which is a widely used base calling software program by both academic and commercial DNA sequencing laboratories because of its high base calling accuracy.
In DNA sequencing, a read is an inferred sequence of base pairs corresponding to all or part of a single DNA fragment. A typical sequencing experiment involves fragmentation of the genome into millions of molecules, which are size-selected and ligated to adapters. The set of fragments is referred to as a sequencing library, which is sequenced to produce a set of reads.
Scaffolding is a technique used in bioinformatics. It is defined as follows:
Link together a non-contiguous series of genomic sequences into a scaffold, consisting of sequences separated by gaps of known length. The sequences that are linked are typically contiguous sequences corresponding to read overlaps.
SPAdes is a genome assembly algorithm which was designed for single cell and multi-cells bacterial data sets. Therefore, it might not be suitable for large genomes projects.
In bioinformatics, a DNA read error occurs when a sequence assembler changes one DNA base for a different base. The reads from the sequence assembler can then be used to create a de Bruijn graph, which can be used in various ways to find errors.
De novo sequence assemblers are a type of program that assembles short nucleotide sequences into longer ones without the use of a reference genome. These are most commonly used in bioinformatic studies to assemble genomes or transcriptomes. Two common types of de novo assemblers are greedy algorithm assemblers and De Bruijn graph assemblers.