Polywater

Last updated

Polywater was a hypothesized polymerized form of water that was the subject of much scientific controversy during the late 1960s, first described by Soviet scientist Nikolai Fedyakin. By 1969 the popular press had taken notice of Western attempts to recreate the substance and sparked fears of a "polywater gap" between the United States and Soviet Union. Increased press attention also brought with it increased scientific attention, and as early as 1970 doubts about its authenticity were being circulated. [1] [2] [3] By 1973 it was found to be illusory, being just water with any number of common compounds contaminating it. [4] Today, polywater is best known as an example of pathological science. [5]

Contents

Background

In 1961, the Soviet physicist Nikolai Fedyakin, working at the Technological Institute of Kostroma, Russia, performed measurements on the properties of water which had been condensed in, or repeatedly forced through, narrow quartz capillary tubes. Some of these experiments resulted in what was seemingly a new form of water with a higher boiling point, lower freezing point, and much higher viscosity than ordinary water – about that of a syrup. [6] [7]

Boris Derjaguin, director of the laboratory for surface physics at the Institute for Physical Chemistry in Moscow, heard about Fedyakin's experiments. He improved on the method to produce the new water, and though he still produced very small quantities of this mysterious material, he did so substantially faster than Fedyakin did. Investigations of the material properties showed a substantially lower freezing point of −40 °C or less, a boiling point of 150 °C or greater, a density of approx. 1.1 to 1.2 g/cm3, and increased expansion with increasing temperature. The results were published in Soviet science journals, [8] and short summaries were published in Chemical Abstracts in English, but Western scientists took no notice of the work.

In 1966, Derjaguin travelled to England for the "Discussions of the Faraday Society" in Nottingham. There, he presented the work again, and this time English scientists took note of what he referred to as anomalous water. English scientists then started researching the effect as well, and by 1968 it was also under study in the United States.

By 1969, the concept had spread to newspapers and magazines. [1] [2] There was fear [ failed verification ] by the United States military that there was a so-called "polywater gap" with the Soviet Union, a popular media term indicating a possible capability "gap", or discrepancy, between the US and the USSR, popularized by media hype of the "bomber gap" and the "missile gap", during periods when the USSR appeared to be outstripping the US in numbers of these respective weapons. [9]

A scientific furore followed. Some experiments carried out were able to reproduce Derjaguin's findings, while others failed. Several theories were advanced to explain the phenomenon. Some proposed it was the cause for increasing resistance on trans-Atlantic phone cables, while others predicted that if polywater were to contact ordinary water, it would convert that water into polywater, echoing the doomsday scenario in Kurt Vonnegut's novel Cat's Cradle . By the 1970s, polywater was well known in the general population. [10]

During this time, several people questioned the authenticity of what had come to be known in the West as polywater. The main concern was contamination of the water, but the papers went to great lengths to note the care taken to avoid this. Denis Rousseau and Sergio Porto of Bell Labs carried out infrared spectrum analysis, which showed polywater to be mostly chlorine and sodium. [11]

Denis Rousseau undertook an experiment with his own sweat after playing a handball game at the lab and found it had identical properties. He then published a paper suggesting polywater was nothing more than water with small amounts of biological impurities. [12]

Another wave of research followed, this time more tightly controlled. Invariably, polywater could no longer be made. Chemical analysis found the samples of polywater to be contaminated with other substances (explaining the changes in melting and boiling points due to colligative properties), and examination of polywater by electron microscopy showed it also contained small particles of various solids – from silica to phospholipids, explaining its greater viscosity.

When the experiments which had initially produced polywater were repeated with thoroughly cleaned glassware, the anomalous properties of the resulting water vanished, and even the scientists who had originally advanced the case for polywater agreed it did not exist.

In August 1973, Derjaguin and N. V. Churaev published a letter in the journal Nature in which they wrote; "these [anomalous] properties should be attributed to impurities rather than to the existence of polymeric water molecules". [13]

Denis Rousseau used polywater as a classic example of pathological science and has since written on other examples as well. [14]

It has been suggested that polywater should have been dismissed on theoretical grounds. The laws of thermodynamics predicted that, since polywater had a higher boiling point than ordinary water, it meant it was more stable, and thus all of Earth's water should have turned spontaneously into polywater, instead of just part of it. [15] Richard Feynman remarked that if such a material existed, then an animal would exist that would ingest water and excrete polywater, using the energy released from the process to survive. [15]

In fiction

The episodes "The Naked Time" ( Star Trek , 1966) and its sequel, "The Naked Now" ( Star Trek: The Next Generation , 1987) involve forms of polywater intoxication. In the original episode, a scientific research outpost falls victim to polywater, which causes the crew to become so incapacitated that they all died after shutting off environmental controls in the compound. In the sequel, a Starfleet vessel is discovered adrift, its crew frozen in various states due to polywater intoxication.

The story "Polywater Doodle" by Howard L. Myers (writing under the pseudonym "Dr. Dolittle") appeared in the February 1971 issue of Analog Science Fiction and Fact . It features an animal composed entirely of polywater, with the metabolism described by Richard Feynman. (The title of the story is a pun on "Polly Wolly Doodle".)

Polywater is the central idea of the 1972 espionage/thriller novel A Report from Group 17 by Robert C. O'Brien. The story revolves around the use of a type of polywater to make people controllable and incapable of independent thought or action.

See also

Related Research Articles

<span class="mw-page-title-main">Colloid</span> Mixture of an insoluble substance microscopically dispersed throughout another substance

A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. Some definitions specify that the particles must be dispersed in a liquid, while others extend the definition to include substances like aerosols and gels. The term colloidal suspension refers unambiguously to the overall mixture. A colloid has a dispersed phase and a continuous phase. The dispersed phase particles have a diameter of approximately 1 nanometre to 1 micrometre.

<span class="mw-page-title-main">N-ray</span> Hypothetical form of radiation

N-rays were a hypothesized form of radiation described by French physicist Prosper-René Blondlot in 1903. They were initially confirmed by others, but subsequently found to be illusory.

Pathological science is an area of research where "people are tricked into false results ... by subjective effects, wishful thinking or threshold interactions." The term was first used by Irving Langmuir, Nobel Prize-winning chemist, during a 1953 colloquium at the Knolls Research Laboratory. Langmuir said a pathological science is an area of research that simply will not "go away"—long after it was given up on as "false" by the majority of scientists in the field. He called pathological science "the science of things that aren't so."

Rheology is the study of the flow of matter, primarily in a fluid state, but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applied force. Rheology is a branch of physics, and it is the science that deals with the deformation and flow of materials, both solids and liquids.

Reproducibility, closely related to replicability and repeatability, is a major principle underpinning the scientific method. For the findings of a study to be reproducible means that results obtained by an experiment or an observational study or in a statistical analysis of a data set should be achieved again with a high degree of reliability when the study is replicated. There are different kinds of replication but typically replication studies involve different researchers using the same methodology. Only after one or several such successful replications should a result be recognized as scientific knowledge.

A non-Newtonian fluid is a fluid that does not follow Newton's law of viscosity, that is, it has variable viscosity dependent on stress. In particular, the viscosity of non-Newtonian fluids can change when subjected to force. Ketchup, for example, becomes runnier when shaken and is thus a non-Newtonian fluid. Many salt solutions and molten polymers are non-Newtonian fluids, as are many commonly found substances such as custard, toothpaste, starch suspensions, corn starch, paint, blood, melted butter, and shampoo.

<span class="mw-page-title-main">Polyethylene terephthalate</span> Polymer

Polyethylene terephthalate (or poly(ethylene terephthalate), PET, PETE, or the obsolete PETP or PET-P), is the most common thermoplastic polymer resin of the polyester family and is used in fibres for clothing, containers for liquids and foods, and thermoforming for manufacturing, and in combination with glass fibre for engineering resins.

<span class="mw-page-title-main">Pitch (resin)</span> Resin

Pitch is a viscoelastic polymer which can be natural or manufactured, derived from petroleum, coal tar, or plants. Pitch produced from petroleum may be called bitumen or asphalt, while plant-derived pitch, a resin, is known as rosin in its solid form. Tar is sometimes used interchangeably with pitch, but generally refers to a more liquid substance derived from coal production, including coal tar, or from plants, as in pine tar.

Boris Vladimirovich Derjaguin was a Soviet and Russian chemist. As a member of the Russian Academy of Sciences, he laid the foundation of the modern science of colloids and surfaces. An epoch in the development of the physical chemistry of colloids and surfaces is associated with his name.

<span class="mw-page-title-main">Mpemba effect</span> Natural phenomenon that hot water freezes faster than cold

The Mpemba effect is the name given to the observation that a liquid which is initially hot can freeze faster than the same liquid which begins cold, under otherwise similar conditions. There is disagreement about its theoretical basis and the parameters required to produce the effect.

<span class="mw-page-title-main">Marangoni effect</span> Physical phenomenon between two fluids

The Marangoni effect is the mass transfer along an interface between two phases due to a gradient of the surface tension. In the case of temperature dependence, this phenomenon may be called thermo-capillary convection.

<span class="mw-page-title-main">Wet chemistry</span> Form of analytical chemistry

Wet chemistry is a form of analytical chemistry that uses classical methods such as observation to analyze materials. It is called wet chemistry since most analyzing is done in the liquid phase. Wet chemistry is also called bench chemistry since many tests are performed at lab benches.

Denis L. Rousseau is an American scientist. He is currently professor and university chairman of the department of physiology and biophysics at Albert Einstein College of Medicine.

<span class="mw-page-title-main">Viscosity</span> Resistance of a fluid to shear deformation

The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity is defined scientifically as a force multiplied by a time divided by an area. Thus its SI units are newton-seconds per square meter, or pascal-seconds.

<span class="mw-page-title-main">Liquid</span> State of matter

A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a nearly constant volume independent of pressure. It is one of the four fundamental states of matter, and is the only state with a definite volume but no fixed shape.

<span class="mw-page-title-main">Glass transition</span> Reversible transition in amorphous materials

The glass–liquid transition, or glass transition, is the gradual and reversible transition in amorphous materials from a hard and relatively brittle "glassy" state into a viscous or rubbery state as the temperature is increased. An amorphous solid that exhibits a glass transition is called a glass. The reverse transition, achieved by supercooling a viscous liquid into the glass state, is called vitrification.

<span class="mw-page-title-main">Properties of water</span> Physical and chemical properties of pure water

Water is a polar inorganic compound that is at room temperature a tasteless and odorless liquid, which is nearly colorless apart from an inherent hint of blue. It is by far the most studied chemical compound and is described as the "universal solvent" and the "solvent of life". It is the most abundant substance on the surface of Earth and the only common substance to exist as a solid, liquid, and gas on Earth's surface. It is also the third most abundant molecule in the universe.

<span class="mw-page-title-main">Cyclohexanedimethanol</span> Chemical compound

Cyclohexanedimethanol (CHDM) is a mixture of isomeric organic compounds with formula C6H10(CH2OH)2. It is a colorless low-melting solid used in the production of polyester resins. Commercial samples consist of a mixture of cis and trans isomers. It is a di-substituted derivative of cyclohexane and is classified as a diol, meaning that it has two OH functional groups. Commercial CHDM typically has a cis/trans ratio of 30:70.

Capillary breakup rheometry is an experimental technique used to assess the extensional rheological response of low viscous fluids. Unlike most shear and extensional rheometers, this technique does not involve active stretch or measurement of stress or strain but exploits only surface tension to create a uniaxial extensional flow. Hence, although it is common practice to use the name rheometer, capillary breakup techniques should be better addressed to as indexers.

Mechanics of gelation describes processes relevant to sol-gel process.

References

  1. 1 2 "Unnatural Water". Time magazine . December 19, 1969. Archived from the original on 27 December 2009. Retrieved 24 December 2010. Western scientists were frankly skeptical. Russian Chemists N. Fedyakin and Boris Deryagin claimed to have produced a mysterious new substance, a form of water so stable, it boiled only at about 1,000°F., or five times the boiling temperature of natural water. It did not evaporate. It did not freeze – though at −40°F., with little or no expansion, it hardened into a glassy substance, quite unlike ice.
  2. 1 2 "Polywater" . The New York Times . September 22, 1969. Retrieved 24 December 2010. Water is so essential, so abundant, so simple in composition and so intensively studied over the centuries that it seems a most unlikely substance to provide a major scientific surprise. Nevertheless, this is precisely what has recently occurred. American chemists have confirmed that there is a form of water with properties quite different from that of the fluid everyone takes for granted. Polywater as this substance has been named is an organized aggregate or polymer of ordinary water molecules but it has very different properties from its ...
  3. "Doubts about Polywater". Time magazine . October 19, 1970. Archived from the original on 1 December 2010. Retrieved 24 December 2010. Challenged by critics to let impartial scientists analyze his polywater, Deryagin had turned over 25 tiny samples of the substance to investigators of the Soviet Academy of Sciences' Institute of Chemical Physics. The results, which were published in the journal, showed that Deryagin's polywater was badly contaminated by organic compounds, including lipids and phospholipids, which are ingredients of human perspiration.
  4. Butler, S. T. (September 17, 1973). "Polywater Debate Fizzles Out". The Sydney Morning Herald . Retrieved 1 May 2021 via Google News.
  5. Greenberg, Arthur (1 January 2009). "Chapter 8". Chemistry: Decade by Decade. New York, New York: Infobase Publishing (Facts on File imprint). p. 287. ISBN   978-1-4381-0978-7 . Retrieved 1 May 2021 via Google Books (Preview).
  6. Федякин (Fedyakin), Н.Н. (N.N.) (1962). "Изменение структуры воды при конденсации в капиллярах" [Changes in the structure of water during condensation in capillaries.]. Коллоидный Журнал (Kolloidnyi Zhurnal, Colloid Journal) (in Russian). 24: 497–501.
  7. Giaimo, Cara (21 September 2015). "Polywater, the Soviet Scientific Secret That Made the World Gulp". Atlas Obscura. Retrieved 1 May 2021.
  8. Deryagin, B. V.; Fedyakin, N. N. (1962). "Special properties and viscosity of liquids condensed in capillaries". Proceedings of the Academy of Sciences of the USSR Physics Chemistry. 147 (2): 808–811.
  9. "U.S. Begins Efforts To Exceed the USSR In Polywater Science. Pentagon Picks Firm to Study Water-Like Fluid That Boils At 400, Was Isolated in 1961". The Wall Street Journal . June 30, 1969. Retrieved 2010-12-24. Good news The U.S. has apparently closed the polywater gap and the Pentagon is bankrolling efforts to push this country's polywater technology ahead of the ...
  10. Christian, P. A.; Berka, L. H. (June 1973). "How You Can Grow Your Own Polywater". Popular Science. pp. 105–107.
  11. Rousseau, Denis L.; Porto, Sergio P. S. (March 27, 1970). "Polywater: Polymer or Artifact?". Science. 167 (3926): 1715–1719. Bibcode:1970Sci...167.1715R. doi:10.1126/science.167.3926.1715. PMID   17729617. S2CID   37067352 . Retrieved August 13, 2011.
  12. Rousseau, Denis L. (January 15, 1971). ""Polywater" and Sweat: Similarities between the Infrared Spectra". Science. 171 (3967): 170–172. Bibcode:1971Sci...171..170R. doi:10.1126/science.171.3967.170. PMID   5538826. S2CID   46032654 . Retrieved August 13, 2011.
  13. Franks, Felix (1981). Polywater. The MIT Press. p. 140. ISBN   0-262-06073-6.
  14. Rousseau, Denis L. (January–February 1992). "Case Studies in Pathological Science". American Scientist . 80 (1): 54–63. Bibcode:1992AmSci..80...54R.
  15. 1 2 Henry H. Bauer. "'Pathological Science' is not Scientific Misconduct (nor is it pathological)". Hyle: International Journal for Philosophy of Chemistry . 8 (1): 5–20. The above paper cites this review from Eisenberg: David Eisenberg (September 1981). "A Scientific Gold Rush. (Book Reviews: Polywater)". Science . 213 (4512): 1104–1105. Bibcode:1981Sci...213.1104F. doi:10.1126/science.213.4512.1104. PMID   17741096.

Further reading