Potato paradox

Last updated

The potato paradox is a mathematical calculation that has a counter-intuitive result. The Universal Book of Mathematics states the problem as such: [1]

Contents

Fred brings home 100 kg of potatoes, which (being purely mathematical potatoes) consist of 99% water (being purely mathematical water). He then leaves them outside overnight so that they consist of 98% water. What is their new weight?

Then reveals the answer:

The surprising answer is 50 kg.

In Quine's classification of paradoxes, the potato paradox is a veridical paradox.

A visualization where blue boxes represent kg of water and the orange boxes represent kg of solid potato matter. Left, prior to dehydration: 1 kg matter, 99 kg water (99% water). Middle: 1 kg matter, 49 kg water (98% water). Potato paradox.svg
A visualization where blue boxes represent kg of water and the orange boxes represent kg of solid potato matter. Left, prior to dehydration: 1 kg matter, 99 kg water (99% water). Middle: 1 kg matter, 49 kg water (98% water).

If the potatoes are 99% water, the dry mass is 1%. This means that the 100 kg of potatoes contains 1 kg of dry mass, which does not change, as only the water evaporates.

In order to make the potatoes be 98% water, the dry mass must become 2% of the total weight—double what it was before. The amount of dry mass, 1 kg, remains unchanged, so this can only be achieved by reducing the total mass of the potatoes. Since the proportion that is dry mass must be doubled, the total mass of the potatoes must be halved, giving the answer 50 kg.

Mathematical proofs

Let x be the new total mass of the potatoes (dry + water).

Let d be the dry mass of the potatoes and w, the mass of water within the potatoes.

Recall w is 98% of the total mass, that is, w = 0.98x.

Therefore, x = d + w = d + 0.98x, i.e., x = d / 0.02 = 50 kg.

In our case, d = 1 kg so the new mass of the potatoes will indeed be 50 kg.


Let X be the mass lost. Since the solid (non-water) mass remains constant, then

X= initial water content – final water content
X= 99% 100 kg – 98% (100 kg – X)
X= 99 kg – 98 kg + 0.98X
0.02X= 1 kg
X= 1 kg / 0.02 = 50 kg

The potato paradox was a "Puzzler" on the Car Talk radio show. [2]

Related Research Articles

Density is a substance's mass per unit of volume. The symbol most often used for density is ρ, although the Latin letter D can also be used. Mathematically, density is defined as mass divided by volume:

<span class="mw-page-title-main">Mass</span> Amount of matter present in an object

Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a body, until the discovery of the atom and particle physics. It was found that different atoms and different elementary particles, theoretically with the same amount of matter, have nonetheless different masses. Mass in modern physics has multiple definitions which are conceptually distinct, but physically equivalent. Mass can be experimentally defined as a measure of the body's inertia, meaning the resistance to acceleration when a net force is applied. The object's mass also determines the strength of its gravitational attraction to other bodies.

<span class="mw-page-title-main">Special relativity</span> Theory of interwoven space and time by Albert Einstein

In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 treatment, the theory is presented as being based on just two postulates:

  1. The laws of physics are invariant (identical) in all inertial frames of reference.
  2. The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer.
<span class="mw-page-title-main">Relative density</span> Ratio of two densities

Relative density, also called specific gravity, is a dimensionless quantity defined as the ratio of the density of a substance to the density of a given reference material. Specific gravity for liquids is nearly always measured with respect to water at its densest ; for gases, the reference is air at room temperature. The term "relative density" is preferred in SI, whereas the term "specific gravity" is gradually being abandoned.

Payload is the object or the entity which is being carried by an aircraft or launch vehicle. Sometimes payload also refers to the carrying capacity of an aircraft or launch vehicle, usually measured in terms of weight. Depending on the nature of the flight or mission, the payload of a vehicle may include cargo, passengers, flight crew, munitions, scientific instruments or experiments, or other equipment. Extra fuel, when optionally carried, is also considered part of the payload.

In mathematical logic, Russell's paradox is a set-theoretic paradox published by the British philosopher and mathematician Bertrand Russell in 1901. Russell's paradox shows that every set theory that contains an unrestricted comprehension principle leads to contradictions. The paradox had already been discovered independently in 1899 by the German mathematician Ernst Zermelo. However, Zermelo did not publish the idea, which remained known only to David Hilbert, Edmund Husserl, and other academics at the University of Göttingen. At the end of the 1890s, Georg Cantor – considered the founder of modern set theory – had already realized that his theory would lead to a contradiction, as he told Hilbert and Richard Dedekind by letter.

<span class="mw-page-title-main">Birthday problem</span> Probability of shared birthdays

In probability theory, the birthday problem asks for the probability that, in a set of n randomly chosen people, at least two will share a birthday. The birthday paradox refers to the counterintuitive fact that only 23 people are needed for that probability to exceed 50%.

<span class="mw-page-title-main">Center of mass</span> Unique point where the weighted relative position of the distributed mass sums to zero

In physics, the center of mass of a distribution of mass in space is the unique point at any given time where the weighted relative position of the distributed mass sums to zero. This is the point to which a force may be applied to cause a linear acceleration without an angular acceleration. Calculations in mechanics are often simplified when formulated with respect to the center of mass. It is a hypothetical point where the entire mass of an object may be assumed to be concentrated to visualise its motion. In other words, the center of mass is the particle equivalent of a given object for application of Newton's laws of motion.

The density of air or atmospheric density, denoted ρ, is the mass per unit volume of Earth's atmosphere. Air density, like air pressure, decreases with increasing altitude. It also changes with variations in atmospheric pressure, temperature and humidity. At 101.325 kPa (abs) and 20 °C, air has a density of approximately 1.204 kg/m3 (0.0752 lb/cu ft), according to the International Standard Atmosphere (ISA). At 101.325 kPa (abs) and 15 °C (59 °F), air has a density of approximately 1.225 kg/m3 (0.0765 lb/cu ft), which is about 1800 that of water, according to the International Standard Atmosphere (ISA). Pure liquid water is 1,000 kg/m3 (62 lb/cu ft).

Braess's paradox is the observation that adding one or more roads to a road network can slow down overall traffic flow through it. The paradox was first discovered by Arthur Pigou in 1920, and later named after the German mathematician Dietrich Braess in 1968.

<span class="mw-page-title-main">Water content</span> Quantity of water contained in a material

Water content or moisture content is the quantity of water contained in a material, such as soil, rock, ceramics, crops, or wood. Water content is used in a wide range of scientific and technical areas, and is expressed as a ratio, which can range from 0 to the value of the materials' porosity at saturation. It can be given on a volumetric or mass (gravimetric) basis.

In physics, a mass balance, also called a material balance, is an application of conservation of mass to the analysis of physical systems. By accounting for material entering and leaving a system, mass flows can be identified which might have been unknown, or difficult to measure without this technique. The exact conservation law used in the analysis of the system depends on the context of the problem, but all revolve around mass conservation, i.e., that matter cannot disappear or be created spontaneously.

<span class="mw-page-title-main">Two envelopes problem</span> Puzzle in logic and mathematics

The two envelopes problem, also known as the exchange paradox, is a paradox in probability theory. It is of special interest in decision theory and for the Bayesian interpretation of probability theory. It is a variant of an older problem known as the necktie paradox. The problem is typically introduced by formulating a hypothetical challenge like the following example:

Imagine you are given two identical envelopes, each containing money. One contains twice as much as the other. You may pick one envelope and keep the money it contains. Having chosen an envelope at will, but before inspecting it, you are given the chance to switch envelopes. Should you switch?

<span class="mw-page-title-main">Monty Hall problem</span> Probability puzzle

The Monty Hall problem is a brain teaser, in the form of a probability puzzle, based nominally on the American television game show Let's Make a Deal and named after its original host, Monty Hall. The problem was originally posed in a letter by Steve Selvin to the American Statistician in 1975. It became famous as a question from reader Craig F. Whitaker's letter quoted in Marilyn vos Savant's "Ask Marilyn" column in Parade magazine in 1990:

Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?

In atmospheric thermodynamics, the virtual temperature of a moist air parcel is the temperature at which a theoretical dry air parcel would have a total pressure and density equal to the moist parcel of air. The virtual temperature of unsaturated moist air is always greater than the absolute air temperature, however, as the existence of suspended cloud droplets reduces the virtual temperature.

<span class="mw-page-title-main">Driving licence in Russia</span>

The Russian Empire was one of the first countries to create a driving licence. Russia's first licences were issued in 1900 by Saint Petersburg authorities, and Russia joined an international convention in 1909. However, due to relatively small number of cars, the attempts to create a standardised Russian licence were rather sporadic and limited to major urban areas. No comprehensive system of driver licensing was present until 1936, when the Soviet government organised and standardised traffic and driving regulations, with the state-wide system regulated by specialised police authorities.

<span class="mw-page-title-main">Driving licence in Romania</span> Overview of driving licences in Romania

In Romania, the driving licence is a governmental right given to those who request a licence for any of the categories they desire. It is required for every type of motorized vehicle. The minimum age to obtain a driving licence is 18 years. Regardless of age, in the first year after obtaining the licence the driver is called a beginner and has to display on the windscreen and the back window of the car the distinctive sign.

Vertical pressure variation is the variation in pressure as a function of elevation. Depending on the fluid in question and the context being referred to, it may also vary significantly in dimensions perpendicular to elevation as well, and these variations have relevance in the context of pressure gradient force and its effects. However, the vertical variation is especially significant, as it results from the pull of gravity on the fluid; namely, for the same given fluid, a decrease in elevation within it corresponds to a taller column of fluid weighing down on that point.

Vehicle weight is a measurement of wheeled motor vehicles; either an actual measured weight of the vehicle under defined conditions or a gross weight rating for its weight carrying capacity.

References

  1. Darling, David J. (2004). The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes. John Wiley & Sons. p. 253. ISBN   0-471-27047-4.
  2. "Porch Potatoes", Car Talk, August 19, 2017.