Predictive power

Last updated
The New York Times of November 10, 1919, reported on Einstein's confirmed prediction of gravitation on space, called the gravitational lens effect. Einstein theory triumphs.png
The New York Times of November 10, 1919, reported on Einstein's confirmed prediction of gravitation on space, called the gravitational lens effect.

The concept of predictive power, the power of a scientific theory to generate testable predictions, differs from explanatory power and descriptive power (where phenomena that are already known are retrospectively explained or described by a given theory) in that it allows a prospective test of theoretical understanding.

Contents

Examples

A classic example of the predictive power of a theory is the discovery of Neptune as a result of predictions made by mathematicians John Couch Adams and Urbain Le Verrier, based on Newton's theory of gravity.

Another example of the predictive power of theories or models is Dmitri Mendeleev's use of his periodic table to predict previously undiscovered chemical elements and their properties. Though largely correct, he misjudged the relative atomic masses of tellurium and iodine.

Moreover, Charles Darwin used his knowledge of evolution by natural selection to predict that since a plant ( Angraecum sesquipedale ) with a long spur in its flowers exists, a complementary animal with a 30 cm proboscis must also exist to feed on and pollinate it. Twenty years after his death, a form of hawk moth ( Xanthopan morganii ) that did just that was found. [1]

Another example of predictive power is the prediction of Einstein's theory of general relativity that the path of light would bend in the presence of a strong gravitational field. This was experimentally verified by an expedition to Sobral in Brazil and the Atlantic island of Príncipe to measure star positions during the solar eclipse of May 29, 1919, when observations made by the astrophysicist Arthur Eddington seemed to confirm Einstein's predictions. [2] Although the measurements have been criticized by some as utilizing flawed methodology, [3] modern reanalysis of the data [4] [5] suggests that Eddington's analysis of the data was accurate. Later, more precise measurements taken by radio interferometry confirmed the predictions to a high degree of accuracy. [6]

Applications

The predictive power of a theory is closely related to applications.[ according to whom? ]

General relativity not only predicts the bending of light but also predicts several other phenomena. Recently, the calculation of proper time of satellites has been a successfully-measured prediction that is now incorporated into the method used to calculate positions via GPS.

If a theory has no predictive power, it cannot be used for applications.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Arthur Eddington</span> British astrophysicist (1882–1944)

Sir Arthur Stanley Eddington was an English astronomer, physicist, and mathematician. He was also a philosopher of science and a populariser of science. The Eddington limit, the natural limit to the luminosity of stars, or the radiation generated by accretion onto a compact object, is named in his honour.

<span class="mw-page-title-main">Gravitational redshift</span> Shift of wavelength of a photon to longer wavelength

In physics and general relativity, gravitational redshift is the phenomenon that electromagnetic waves or photons travelling out of a gravitational well lose energy. This loss of energy corresponds to a decrease in the wave frequency and increase in the wavelength, known more generally as a redshift. The opposite effect, in which photons gain energy when travelling into a gravitational well, is known as a gravitational blueshift. The effect was first described by Einstein in 1907, eight years before his publication of the full theory of relativity.

<span class="mw-page-title-main">General relativity</span> Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations.

<span class="mw-page-title-main">Theory of relativity</span> Two interrelated physics theories by Albert Einstein

The theory of relativity usually encompasses two interrelated physics theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in the absence of gravity. General relativity explains the law of gravitation and its relation to the forces of nature. It applies to the cosmological and astrophysical realm, including astronomy.

<span class="mw-page-title-main">Gravity</span> Attraction of masses and energy

In physics, gravity (from Latin gravitas 'weight') is a fundamental interaction which causes mutual attraction between all things that have mass. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong interaction, 1036 times weaker than the electromagnetic force and 1029 times weaker than the weak interaction. As a result, it has no significant influence at the level of subatomic particles. However, gravity is the most significant interaction between objects at the macroscopic scale, and it determines the motion of planets, stars, galaxies, and even light.

<span class="mw-page-title-main">Gravitational lens</span> Light bending by mass between source and observer

A gravitational lens is matter, such as a cluster of galaxies or a point particle, that bends light from a distant source as it travels toward an observer. The amount of gravitational lensing is described by Albert Einstein's general theory of relativity. If light is treated as corpuscles travelling at the speed of light, Newtonian physics also predicts the bending of light, but only half of that predicted by general relativity.

<i>Angraecum</i> Genus of orchids

Angraecum, also known as comet orchid, is a genus of the family Orchidaceae native to tropical and South Africa, as well as Sri Lanka. It contains 223 species.

<span class="mw-page-title-main">Sphingidae</span> Family of insects

The Sphingidae are a family of moths commonly called sphinx moths, also colloquially known as hawk moths, with many of their caterpillars known as "hornworms"; it includes about 1,450 species. It is best represented in the tropics, but species are found in every region. They are moderate to large in size and are distinguished among moths for their agile and sustained flying ability, similar enough to that of hummingbirds as to be reliably mistaken for them. Their narrow wings and streamlined abdomens are adaptations for rapid flight. The family was named by French zoologist Pierre André Latreille in 1802.

<span class="mw-page-title-main">Gravity Probe A</span> Space-based experiment to test the theory of general relativity

Gravity Probe A (GP-A) was a space-based experiment to test the equivalence principle, a feature of Einstein's theory of relativity. It was performed jointly by the Smithsonian Astrophysical Observatory and the National Aeronautics and Space Administration. The experiment sent a hydrogen maser—a highly accurate frequency standard—into space to measure with high precision the rate at which time passes in a weaker gravitational field. Masses cause distortions in spacetime, which leads to the effects of length contraction and time dilation, both predicted results of Albert Einstein's theory of general relativity. Because of the bending of spacetime, an observer on Earth should measure a slower rate at which time passes than an observer that is higher in altitude. This effect is known as gravitational time dilation.

<span class="mw-page-title-main">William Wallace Campbell</span> American astronomer

William Wallace Campbell was an American astronomer, and director of Lick Observatory from 1901 to 1930. He specialized in spectroscopy. He was the tenth president of the University of California from 1923 to 1930.

<span class="mw-page-title-main">Introduction to general relativity</span> Theory of gravity by Albert Einstein

General relativity is a theory of gravitation developed by Albert Einstein between 1907 and 1915. The theory of general relativity says that the observed gravitational effect between masses results from their warping of spacetime.

Tests of general relativity serve to establish observational evidence for the theory of general relativity. The first three tests, proposed by Albert Einstein in 1915, concerned the "anomalous" precession of the perihelion of Mercury, the bending of light in gravitational fields, and the gravitational redshift. The precession of Mercury was already known; experiments showing light bending in accordance with the predictions of general relativity were performed in 1919, with increasingly precise measurements made in subsequent tests; and scientists claimed to have measured the gravitational redshift in 1925, although measurements sensitive enough to actually confirm the theory were not made until 1954. A more accurate program starting in 1959 tested general relativity in the weak gravitational field limit, severely limiting possible deviations from the theory.

General relativity is a theory of gravitation that was developed by Albert Einstein between 1907 and 1915, with contributions by many others after 1915. According to general relativity, the observed gravitational attraction between masses results from the warping of space and time by those masses.

<span class="mw-page-title-main">Pound–Rebka experiment</span> Test of gravitational redshift

The Pound–Rebka experiment monitored frequency shifts in gamma rays as they rose and fell in the gravitational field of the Earth. The experiment tested Albert Einstein's 1907 and 1911 predictions, based on the equivalence principle, that photons would gain energy when descending a gravitational potential, and would lose energy when rising through a gravitational potential. It was proposed by Robert Pound and his graduate student Glen A. Rebka Jr. in 1959, and was the last of the classical tests of general relativity to be verified. The measurement of gravitational redshift and blueshift by this experiment validated the prediction of the equivalence principle that clocks should be measured as running at different rates in different places of a gravitational field. It is considered to be the experiment that ushered in an era of precision tests of general relativity.

In theoretical physics, Whitehead's theory of gravitation was introduced by the mathematician and philosopher Alfred North Whitehead in 1922. While never broadly accepted, at one time it was a scientifically plausible alternative to general relativity. However, after further experimental and theoretical consideration, the theory is now generally regarded as obsolete.

A gravitational mirage or cosmic mirage is an optical phenomenon affecting the appearance of a distant star or galaxy, seen only through a telescope. It can take the form of a ring or rings partially or completely surrounding the object, a duplicate image adjacent to the object, or multiple duplicate images surrounding the object. Sometimes the direct view of the original object itself is dimmed or absent.

<i>Angraecum sesquipedale</i> Species of orchid

Angraecum sesquipedale, also known as Darwin's orchid, Christmas orchid, Star of Bethlehem orchid, and king of the angraecums, is an epiphytic orchid in the genus Angraecum endemic to Madagascar. The orchid was first discovered by the French botanist Louis-Marie Aubert du Petit-Thouars in 1798, but was not described until 1822. It is noteworthy for its long spur and its association with the naturalist Charles Darwin, who surmised that the flower was pollinated by a then undiscovered moth with a proboscis whose length was unprecedented at the time. Darwin's prediction went unverified for 21 years after his death, until just such a moth was discovered and his conjecture vindicated. The story of its postulated pollinator has come to be seen as one of the celebrated predictions of the theory of evolution.

<i>Xanthopan</i> Genus of moths

Xanthopan is a monotypic genus of sphinx moth, with Xanthopan morganii, commonly called Morgan's sphinx moth, as its sole species. It is a very large sphinx moth from Southern Africa and Madagascar. Little is known about its biology, though the adults have been found to visit orchids and are one of the main pollinators of several of the Madagascar endemic baobab (Adansonia) species, Adansonia perrieri or Perrier's baobab.

<span class="mw-page-title-main">Solar eclipse of May 29, 1919</span> 20th-century total solar eclipse

A total solar eclipse occurred on Thursday, May 29, 1919. With the duration of totality at maximum eclipse of 6 minutes 50.75 seconds, it was the longest solar eclipse that occurred since May 27, 1416. A longer total solar eclipse would later occur on June 8, 1937.

<span class="mw-page-title-main">Eddington experiment</span> 1919 observational test which confirmed Einsteins theory of general relativity

The Eddington experiment was an observational test of general relativity, organised by the British astronomers Frank Watson Dyson and Arthur Stanley Eddington in 1919. The observations were of the total solar eclipse of 29 May 1919 and were carried out by two expeditions, one to the West African island of Príncipe, and the other to the Brazilian town of Sobral. The aim of the expeditions was to measure the gravitational deflection of starlight passing near the Sun. The value of this deflection had been predicted by Albert Einstein in a 1911 paper; however, this initial prediction turned out not to be correct because it was based on an incomplete theory of general relativity. Einstein later improved his prediction after finalizing his theory in 1915 and obtaining the solution to his equations by Karl Schwarzschild. Following the return of the expeditions, the results were presented by Eddington to the Royal Society of London and, after some deliberation, were accepted. Widespread newspaper coverage of the results led to worldwide fame for Einstein and his theories.

References

  1. ARDITTI, JOSEPH; ELLIOTT, JOHN; KITCHING, IAN J.; WASSERTHAL, LUTZ T. (July 2012). "'Good Heavens what insect can suck it'- Charles Darwin, Angraecum sesquipedale and Xanthopan morganii praedicta". Botanical Journal of the Linnean Society. 169 (3): 403–432. doi:10.1111/j.1095-8339.2012.01250.x.
  2. "IX. A determination of the deflection of light by the sun's gravitational field, from observations made at the total eclipse of May 29, 1919". Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character. 220 (571–581): 291–333. 1920. doi: 10.1098/rsta.1920.0009 .
  3. Harry Collins and Trevor Pinch, The Golem: What Everyone Should Know About Science, Cambridge University Press, 1993. ( ISBN   0521477360)
  4. Daniel Kennefick, "Not Only Because of Theory: Dyson, Eddington and the Competing Myths of the 1919 Eclipse Expedition," Proceedings of the 7th Conference on the History of General Relativity, Tenerife, 2005; available online from ArXiv Archived 2023-10-30 at the Wayback Machine
  5. Phillip Ball, "Arthur Eddington Was Innocent," Nature, 7 September 2007, doi : 10.1038/news070903-20 (available online 2007)
  6. Muhleman, D. O.; Ekers, R. D.; Fomalont, E. B. (15 June 1970). "Radio Interferometric Test of the General Relativistic Light Bending Near the Sun". Physical Review Letters. 24 (24): 1377–1380. doi:10.1103/PhysRevLett.24.1377.