Preference learning

Last updated

Preference learning is a subfield in machine learning, which is a classification method based on observed preference information. [1] In the view of supervised learning, preference learning trains on a set of items which have preferences toward labels or other items and predicts the preferences for all items.

Contents

While the concept of preference learning has been emerged for some time in many fields such as economics, [2] it's a relatively new topic in Artificial Intelligence research. Several workshops have been discussing preference learning and related topics in the past decade. [3]

Tasks

The main task in preference learning concerns problems in "learning to rank". According to different types of preference information observed, the tasks are categorized as three main problems in the book Preference Learning: [4]

Label ranking

In label ranking, the model has an instance space and a finite set of labels . The preference information is given in the form indicating instance shows preference in rather than . A set of preference information is used as training data in the model. The task of this model is to find a preference ranking among the labels for any instance.

It was observed some conventional classification problems can be generalized in the framework of label ranking problem: [5] if a training instance is labeled as class , it implies that . In the multi-label case, is associated with a set of labels and thus the model can extract a set of preference information . Training a preference model on this preference information and the classification result of an instance is just the corresponding top ranking label.

Instance ranking

Instance ranking also has the instance space and label set . In this task, labels are defined to have a fixed order and each instance is associated with a label . Giving a set of instances as training data, the goal of this task is to find the ranking order for a new set of instances.

Object ranking

Object ranking is similar to instance ranking except that no labels are associated with instances. Given a set of pairwise preference information in the form and the model should find out a ranking order among instances.

Techniques

There are two practical representations of the preference information . One is assigning and with two real numbers and respectively such that . Another one is assigning a binary value for all pairs denoting whether or . Corresponding to these two different representations, there are two different techniques applied to the learning process.

Utility function

If we can find a mapping from data to real numbers, ranking the data can be solved by ranking the real numbers. This mapping is called utility function. For label ranking the mapping is a function such that . For instance ranking and object ranking, the mapping is a function .

Finding the utility function is a regression learning problem which is well developed in machine learning.

Preference relations

The binary representation of preference information is called preference relation. For each pair of alternatives (instances or labels), a binary predicate can be learned by conventional supervising learning approach. Fürnkranz and Hüllermeier proposed this approach in label ranking problem. [6] For object ranking, there is an early approach by Cohen et al. [7]

Using preference relations to predict the ranking will not be so intuitive. Since preference relation is not transitive, it implies that the solution of ranking satisfying those relations would sometimes be unreachable, or there could be more than one solution. A more common approach is to find a ranking solution which is maximally consistent with the preference relations. This approach is a natural extension of pairwise classification. [6]

Uses

Preference learning can be used in ranking search results according to feedback of user preference. Given a query and a set of documents, a learning model is used to find the ranking of documents corresponding to the relevance with this query. More discussions on research in this field can be found in Tie-Yan Liu's survey paper. [8]

Another application of preference learning is recommender systems. [9] Online store may analyze customer's purchase record to learn a preference model and then recommend similar products to customers. Internet content providers can make use of user's ratings to provide more user preferred contents.

See also

Related Research Articles

<span class="mw-page-title-main">Supervised learning</span> A paradigm in machine learning

Supervised learning (SL) is a paradigm in machine learning where input objects and a desired output value train a model. The training data is processed, building a function that maps new data on expected output values. An optimal scenario will allow for the algorithm to correctly determine output values for unseen instances. This requires the learning algorithm to generalize from the training data to unseen situations in a "reasonable" way. This statistical quality of an algorithm is measured through the so-called generalization error.

Pattern recognition is the task of assigning a class to an observation based on patterns extracted from data. While similar, pattern recognition (PR) is not to be confused with pattern machines (PM) which may possess (PR) capabilities but their primary function is to distinguish and create emergent pattern. PR has applications in statistical data analysis, signal processing, image analysis, information retrieval, bioinformatics, data compression, computer graphics and machine learning. Pattern recognition has its origins in statistics and engineering; some modern approaches to pattern recognition include the use of machine learning, due to the increased availability of big data and a new abundance of processing power.

Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning. In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations.

Multi-task learning (MTL) is a subfield of machine learning in which multiple learning tasks are solved at the same time, while exploiting commonalities and differences across tasks. This can result in improved learning efficiency and prediction accuracy for the task-specific models, when compared to training the models separately. Early versions of MTL were called "hints".

The Stanford Research Institute Problem Solver, known by its acronym STRIPS, is an automated planner developed by Richard Fikes and Nils Nilsson in 1971 at SRI International. The same name was later used to refer to the formal language of the inputs to this planner. This language is the base for most of the languages for expressing automated planning problem instances in use today; such languages are commonly known as action languages. This article only describes the language, not the planner.

In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. The general task of pattern analysis is to find and study general types of relations in datasets. For many algorithms that solve these tasks, the data in raw representation have to be explicitly transformed into feature vector representations via a user-specified feature map: in contrast, kernel methods require only a user-specified kernel, i.e., a similarity function over all pairs of data points computed using inner products. The feature map in kernel machines is infinite dimensional but only requires a finite dimensional matrix from user-input according to the Representer theorem. Kernel machines are slow to compute for datasets larger than a couple of thousand examples without parallel processing.

Pairwise comparison generally is any process of comparing entities in pairs to judge which of each entity is preferred, or has a greater amount of some quantitative property, or whether or not the two entities are identical. The method of pairwise comparison is used in the scientific study of preferences, attitudes, voting systems, social choice, public choice, requirements engineering and multiagent AI systems. In psychology literature, it is often referred to as paired comparison.

In machine learning, multi-label classification or multi-output classification is a variant of the classification problem where multiple nonexclusive labels may be assigned to each instance. Multi-label classification is a generalization of multiclass classification, which is the single-label problem of categorizing instances into precisely one of several classes. In the multi-label problem the labels are nonexclusive and there is no constraint on how many of the classes the instance can be assigned to.

Learning to rank or machine-learned ranking (MLR) is the application of machine learning, typically supervised, semi-supervised or reinforcement learning, in the construction of ranking models for information retrieval systems. Training data may, for example, consist of lists of items with some partial order specified between items in each list. This order is typically induced by giving a numerical or ordinal score or a binary judgment for each item. The goal of constructing the ranking model is to rank new, unseen lists in a similar way to rankings in the training data.

Large margin nearest neighbor (LMNN) classification is a statistical machine learning algorithm for metric learning. It learns a pseudometric designed for k-nearest neighbor classification. The algorithm is based on semidefinite programming, a sub-class of convex optimization.

In multiple criteria decision aiding (MCDA), multicriteria classification involves problems where a finite set of alternative actions should be assigned into a predefined set of preferentially ordered categories (classes). For example, credit analysts classify loan applications into risk categories, customers rate products and classify them into attractiveness groups, candidates for a job position are evaluated and their applications are approved or rejected, technical systems are prioritized for inspection on the basis of their failure risk, clinicians classify patients according to the extent to which they have a complex disease or not, etc.

Manifold alignment is a class of machine learning algorithms that produce projections between sets of data, given that the original data sets lie on a common manifold. The concept was first introduced as such by Ham, Lee, and Saul in 2003, adding a manifold constraint to the general problem of correlating sets of high-dimensional vectors.

In machine learning, a ranking SVM is a variant of the support vector machine algorithm, which is used to solve certain ranking problems. The ranking SVM algorithm was published by Thorsten Joachims in 2002. The original purpose of the algorithm was to improve the performance of an internet search engine. However, it was found that ranking SVM also can be used to solve other problems such as Rank SIFT.

Classifier chains is a machine learning method for problem transformation in multi-label classification. It combines the computational efficiency of the binary relevance method while still being able to take the label dependencies into account for classification.

Similarity learning is an area of supervised machine learning in artificial intelligence. It is closely related to regression and classification, but the goal is to learn a similarity function that measures how similar or related two objects are. It has applications in ranking, in recommendation systems, visual identity tracking, face verification, and speaker verification.

In machine learning, a probabilistic classifier is a classifier that is able to predict, given an observation of an input, a probability distribution over a set of classes, rather than only outputting the most likely class that the observation should belong to. Probabilistic classifiers provide classification that can be useful in its own right or when combining classifiers into ensembles.

Maximal lotteries are a probabilistic voting method and tournament solution, first proposed by the French mathematician and social scientist Germain Kreweras in 1965, and popularized by Peter Fishburn. The method uses ranked ballots and returns the probability distribution of candidates that is preferred by a majority of voters to any other.

In machine learning, multiple-instance learning (MIL) is a type of supervised learning. Instead of receiving a set of instances which are individually labeled, the learner receives a set of labeled bags, each containing many instances. In the simple case of multiple-instance binary classification, a bag may be labeled negative if all the instances in it are negative. On the other hand, a bag is labeled positive if there is at least one instance in it which is positive. From a collection of labeled bags, the learner tries to either (i) induce a concept that will label individual instances correctly or (ii) learn how to label bags without inducing the concept.

Algorithm selection is a meta-algorithmic technique to choose an algorithm from a portfolio on an instance-by-instance basis. It is motivated by the observation that on many practical problems, different algorithms have different performance characteristics. That is, while one algorithm performs well in some scenarios, it performs poorly in others and vice versa for another algorithm. If we can identify when to use which algorithm, we can optimize for each scenario and improve overall performance. This is what algorithm selection aims to do. The only prerequisite for applying algorithm selection techniques is that there exists a set of complementary algorithms.

Weak supervision is a paradigm in machine learning, the relevance and notability of which increased with the advent of large language models due to large amount of data required to train them. It is characterized by using a combination of a small amount of human-labeled data, followed by a large amount of unlabeled data. In other words, the desired output values are provided only for a subset of the training data. The remaining data is unlabeled or imprecisely labeled. Intuitively, it can be seen as an exam and labeled data as sample problems that the teacher solves for the class as an aid in solving another set of problems. In the transductive setting, these unsolved problems act as exam questions. In the inductive setting, they become practice problems of the sort that will make up the exam. Technically, it could be viewed as performing clustering and then labeling the clusters with the labeled data, pushing the decision boundary away from high-density regions, or learning an underlying one-dimensional manifold where the data reside.

References

  1. Mohri, Mehryar; Rostamizadeh, Afshin; Talwalkar, Ameet (2012). Foundations of Machine Learning. US, Massachusetts: MIT Press. ISBN   9780262018258.
  2. Shogren, Jason F.; List, John A.; Hayes, Dermot J. (2000). "Preference Learning in Consecutive Experimental Auctions". American Journal of Agricultural Economics. 82 (4): 1016–1021. doi:10.1111/0002-9092.00099. S2CID   151493631.
  3. "Preference learning workshops". 23 January 2024.
  4. Fürnkranz, Johannes; Hüllermeier, Eyke (2011). "Preference Learning: An Introduction". Preference Learning. Springer-Verlag New York, Inc. pp. 3–8. ISBN   978-3-642-14124-9.
  5. Har-peled, Sariel; Roth, Dan; Zimak, Dav (2003). "Constraint classification for multiclass classification and ranking". In Proceedings of the 16th Annual Conference on Neural Information Processing Systems, NIPS-02: 785–792.
  6. 1 2 Fürnkranz, Johannes; Hüllermeier, Eyke (2003). "Pairwise Preference Learning and Ranking". Proceedings of the 14th European Conference on Machine Learning: 145–156.
  7. Cohen, William W.; Schapire, Robert E.; Singer, Yoram (1998). "Learning to order things". In Proceedings of the 1997 Conference on Advances in Neural Information Processing Systems: 451–457. ISBN   978-0-262-10076-2.
  8. Liu, Tie-Yan (2009). "Learning to Rank for Information Retrieval". Foundations and Trends in Information Retrieval. 3 (3): 225–331. doi:10.1561/1500000016.
  9. Gemmis, Marco De; Iaquinta, Leo; Lops, Pasquale; Musto, Cataldo; Narducci, Fedelucio; Semeraro, Giovanni (2009). "Learning Preference Models in Recommender Systems". Preference Learning in Recommender Systems (PDF). Vol. 41. pp. 387–407. doi:10.1007/978-3-642-14125-6_18. ISBN   978-3-642-14124-9.{{cite book}}: |journal= ignored (help)