Process miniaturization

Last updated

Chemical process miniaturization refers to a philosophical concept within the discipline of process design that challenges the notion of "economy of scale" or "bigger is better". In this context, process design refers to the discipline taught primarily to chemical engineers. However, the emerging discipline of process miniaturization will involve integrated knowledge from many areas; as examples, systems engineering and design, remote measurement and control using intelligent sensors, biological process systems engineering, and advanced manufacturing robotics, etc.

Contents

One of the challenges of chemical engineering has been to design processes based on chemical laboratory-scale methods, and to scale-up processes so that products can be manufactured that are economically affordable.

As a process becomes larger, more product can be produced per unit time, so when a process technology becomes established or mature, and operates consistently without upsets or “downtime”, more economic efficiency can be gained from scale-up. Given a fixed price for the feedstock (e.g. the price per barrel of crude oil), the product cost can be decreased using a larger scale process because the capital investment and operational costs do not normally increase linearly with scale. For example, the capacity or volume of a cylindrical vessel used to produce a product increases proportional to the square of the radius of the cylinder, so cost of materials per unit volume decreases. But the costs to design and fabricate the vessel have traditionally been less sensitive to scale. In other words, one can design a small vessel and fabricate it for about the same cost as the larger vessel. In addition, the cost to control and operate a process (or a process unit component) does not change substantially with the scale. For example, if it takes one operator to operate a small process, that same operator can probably operate the larger process.

The economy of scale concept, as taught to chemical engineers, has led to the notion that one of the objectives of process development and design is to achieve “economy of scale” by scaling-up to the largest possible size processing plant so that the product cost can be economically affordable. This disciplinary philosophy has been reinforced by example designs in the petroleum refining and petrochemical industries, where feedstocks have been transported as fluids in pipelines, large tanker ships, and railcars.

Fluids, by definition are materials that flow and can be transferred using pumps or gravity. Therefore, large pumps, valves, and pipelines exist to transfer large amounts of fluids in the process industries. Process miniaturization, in contrast, will involve processing of large amounts of solids from renewable biomass resources; therefore, new thinking towards process designs optimized for solids processing will be required.

The concept of a microprocess has been defined by S. S. Sofer while a professor at the New Jersey Institute of Technology. A microprocess has the following characteristics: [1]

1) Portability
2) Capable of being mass produced using advanced robotic manufacturing methods
3) Approaching total automation
4) A new technology

Miniaturization of Electronic Devices

The microprocess design philosophy has been largely envisioned by historical analysis of the role that component miniaturization has played in the information technology industry. It is the evolution of the miniaturization of computer hardware that has enabled the thinking about process miniaturization, in the chemical engineering design context. Rather than the traditional design objective as “scale-up” of processing to one centralized large processing plant (e.g. the mainframe), one can envision achieving the economic objectives using a “scale-out” philosophy (e.g. multiple microcomputers).

Electrical and electronic devices have always played an important role in chemical process plant automation. However, initially, simple thermometers such as those containing mercury, and pressure gauges which were completely mechanical in nature were used to monitor process conditions (such as the temperature, pressure and level in a chemical reactor). Process conditions were adjusted based largely on a human operator's heuristic knowledge of the process behavior. Even with electronic automation installed, many process still require substantial operator interaction, particularly during the start-up phase of the process, or during deployment of a new technology.

Process control of the future will involve the widespread utilization of intelligent sensors, and mass-produced intelligent miniaturized devices such as programmable logic controllers that communicate wirelessly to process actuators. Since these devices will be miniaturized to reduce manufacturing cost, this enables the devices to be embedded in structures so that they become invisible to the casual observer. The cost of such sensors will likely be reduced to a point where they either "function or don't function". When that cost threshold has been reached, the repair procedure will be to disable the sensor, and to actuate a redundant working sensor. In otherwords, entire complex control systems will become so low cost, that repair will not be economically viable.

The intelligence of the process will be developed using process simulation models based on scientific fundamentals. Heuristic rules will be programmed into the micro-controllers, which will largely eliminate the need for constant monitoring by human heuristic knowledge of the process behavior. Process which can automatically self-optimize through advanced algorithms developed by microprocess engineers will be embedded, and only accessible to the knowledge-owner. This will enable the construction of large networks of autonomous microprocesses.

Process Miniaturization for Knowledge-based Businesses

Advanced process control systems for process miniaturization will increase the need for controlling the security and ownership of process intelligence in a knowledge-based business. It will become more difficult to control intellectual property through the traditional method of patents; therefore, trademarks, brand recognition, and copyright laws will play a more important role in value security for knowledge-based businesses of the future.

Techno-economic analysis, as taught in traditional chemical process design, will also dramatically shift from a conservative viewpoint of utilization of historical trend economics and cash flow analysis. Economic viability of a given enterprise will be more linked to acquisition of real-time economic information, that can rapidly change based on empirical observations created by an emerging discipline of microprocess development systems; therefore, the models will be more based on "what can be?" rather that "what has the past shown?"

Process Miniaturization for Future Societies Based on Renewable Materials

Rather than one large central plant, that has to be fed a large amount of feedstock, such as a refinery that can unload a tanker shipment of petroleum if located next to an ocean, the discipline of process miniaturization envisions the distribution of the process technology to areas where the feedstock is not readily transportable in large quantities to a large centralized processing plant. The miniaturized process technology may simply involve transformation of solid biomass materials from multiple distributed microprocesses into more easily manageable fluids. The fluids can then be transported or distributed to larger-scale intelligent processing nodes using conventional fluid transport technology.

Historically, small processes or microprocesses per se have always existed. For example, small vineyards and breweries have produced feedstock, processed it, and stored product in what could be considered “microprocess” when compared to processes designed based on the petrochemical industry model or, for example, large-scale production of beer. Small villages in India and other places in the world have learned to produce biogas from animal manure in what could be considered small-scale microprocesses for the production of energy. However, microprocesses and process miniaturization as a design philosophy includes the notion of approaching total automation, and is a new technology which has been enabled by computer hardware miniaturization, for example, the microprocessor. It is easy to envision processes which can be mass-produced and transported. For example, many appliances such as air conditioners, domestic washing machines, and refrigerators could be considered microprocesses.

The design philosophy of process miniaturization envisions that “scale-down” of complex processes involving multiple process unit operations can be achieved, and that economy of scale will be more related to the size of a network of distributed autonomous microprocesses. Since failure of one autonomous microprocess does not cause shutdown of the entire network, microprocesses will lead to more economically efficient, robust, and stable production of products that have traditionally been produced for a petroleum-based society.

Since fossil fuels by definition are being consumed and are non-renewable, future fuel and materials will be based on renewable biomass.

Process Miniaturization for Microbial Fuel Cells

The conversion of biomass into energy is perhaps more challenging to the technologist than energy from fossil fuels. Water, dissolved organic and inorganic compounds, and solid particulates of various size can be present in biomass processes. It is perhaps the development of microbial fuel cells where the philosophical thinking of process miniaturization will play a wider role. Distribution of knowledge, in a fashionable, intriguing style through miniaturized devices, can be substantially enhanced (accelerated) by low power consuming devices (such as smart phones). A rethinking of "what is a powerplant?" can create enormous innovations, given recent advances in membrane materials of construction, immobilized whole cell methodologies, metabolic engineering, and nanotechnology.

The challenges of microbial fuel cells relate mainly to finding lower cost manufacturing methods, materials of construction, and systems design. Bruce Logan from the Penn State University has described in several research articles and reviews these challenges.

However, even with existing designs which generate low power, there are applications in distribution of electrical recharging systems to remote areas of Africa, where smart phone, can enable access to the vast information of the internet, and to provide lighting. These systems can run on agricultural, animal and human waste streams using naturally occurring bacteria.

Process Miniaturization for mini Nuclear Reactors

Nuclear power is considered "green technology" in that it does not produce carbon dioxide, a green house gas, as do traditional natural gas or coal-fired power plants. The economics of the deployment of mini nuclear reactors has been discussed in an article in "The Economist".

The advantages of mini nuclear reactors has also been discussed by Secretary of Energy, Steven Chu. [2] As discussed by Chu, the reactors would be manufactured in a factory-like situation and then transported, intact by rail or ship to different parts of the country or world. Economy of scale by size is replaced by economy of scale by number. Many companies are not willing to accept the risk of investing $8B to $9B dollars in single large reactor, so one of the most attractive features of process miniaturization is a reduction in the risk of capital investment, and the possibility of recovering investment by reselling and relocating a functional turn-key microprocess to a new owner - a major economic advantage of the portability of microprocesses.

Related Research Articles

Microtechnology deals with technology whose features have dimensions of the order of one micrometre. It focuses on physical and chemical processes as well as the production or manipulation of structures with one-micrometre magnitude.

<span class="mw-page-title-main">Automation</span> Use of various control systems for operating equipment

Automation describes a wide range of technologies that reduce human intervention in processes, mainly by predetermining decision criteria, subprocess relationships, and related actions, as well as embodying those predeterminations in machines. Automation has been achieved by various means including mechanical, hydraulic, pneumatic, electrical, electronic devices, and computers, usually in combination. Complicated systems, such as modern factories, airplanes, and ships typically use combinations of all of these techniques. The benefit of automation includes labor savings, reducing waste, savings in electricity costs, savings in material costs, and improvements to quality, accuracy, and precision.

<span class="mw-page-title-main">Gasification</span> Form of energy conversion

Gasification is a process that converts biomass- or fossil fuel-based carbonaceous materials into gases, including as the largest fractions: nitrogen (N2), carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2). This is achieved by reacting the feedstock material at high temperatures (typically >700 °C), without combustion, via controlling the amount of oxygen and/or steam present in the reaction. The resulting gas mixture is called syngas (from synthesis gas) or producer gas and is itself a fuel due to the flammability of the H2 and CO of which the gas is largely composed. Power can be derived from the subsequent combustion of the resultant gas, and is considered to be a source of renewable energy if the gasified compounds were obtained from biomass feedstock.

A lab-on-a-chip (LOC) is a device that integrates one or several laboratory functions on a single integrated circuit of only millimeters to a few square centimeters to achieve automation and high-throughput screening. LOCs can handle extremely small fluid volumes down to less than pico-liters. Lab-on-a-chip devices are a subset of microelectromechanical systems (MEMS) devices and sometimes called "micro total analysis systems" (µTAS). LOCs may use microfluidics, the physics, manipulation and study of minute amounts of fluids. However, strictly regarded "lab-on-a-chip" indicates generally the scaling of single or multiple lab processes down to chip-format, whereas "µTAS" is dedicated to the integration of the total sequence of lab processes to perform chemical analysis.

The Fischer–Tropsch process (FT) is a collection of chemical reactions that converts a mixture of carbon monoxide and hydrogen, known as syngas, into liquid hydrocarbons. These reactions occur in the presence of metal catalysts, typically at temperatures of 150–300 °C (302–572 °F) and pressures of one to several tens of atmospheres. The Fischer–Tropsch process is an important reaction in both coal liquefaction and gas to liquids technology for producing liquid hydrocarbons.

Micro process engineering is the science of conducting chemical or physical processes inside small volumina, typically inside channels with diameters of less than 1 mm (microchannels) or other structures with sub-millimeter dimensions. These processes are usually carried out in continuous flow mode, as opposed to batch production, allowing a throughput high enough to make micro process engineering a tool for chemical production. Micro process engineering is therefore not to be confused with microchemistry, which deals with very small overall quantities of matter.

<span class="mw-page-title-main">Chemical plant</span> Industrial process plant that manufactures chemicals

A chemical plant is an industrial process plant that manufactures chemicals, usually on a large scale. The general objective of a chemical plant is to create new material wealth via the chemical or biological transformation and or separation of materials. Chemical plants use specialized equipment, units, and technology in the manufacturing process. Other kinds of plants, such as polymer, pharmaceutical, food, and some beverage production facilities, power plants, oil refineries or other refineries, natural gas processing and biochemical plants, water and wastewater treatment, and pollution control equipment use many technologies that have similarities to chemical plant technology such as fluid systems and chemical reactor systems. Some would consider an oil refinery or a pharmaceutical or polymer manufacturer to be effectively a chemical plant.

<span class="mw-page-title-main">Synthetic fuel</span> Fuel from carbon monoxide and hydrogen

Synthetic fuel or synfuel is a liquid fuel, or sometimes gaseous fuel, obtained from syngas, a mixture of carbon monoxide and hydrogen, in which the syngas was derived from gasification of solid feedstocks such as coal or biomass or by reforming of natural gas.

<span class="mw-page-title-main">Pilot plant</span>

A pilot plant is a pre-commercial production system that employs new production technology and/or produces small volumes of new technology-based products, mainly for the purpose of learning about the new technology. The knowledge obtained is then used for design of full-scale production systems and commercial products, as well as for identification of further research objectives and support of investment decisions. Other (non-technical) purposes include gaining public support for new technologies and questioning government regulations. Pilot plant is a relative term in the sense that pilot plants are typically smaller than full-scale production plants, but are built in a range of sizes. Also, as pilot plants are intended for learning, they typically are more flexible, possibly at the expense of economy. Some pilot plants are built in laboratories using stock lab equipment, while others require substantial engineering efforts, cost millions of dollars, and are custom-assembled and fabricated from process equipment, instrumentation and piping. They can also be used to train personnel for a full-scale plant. Pilot plants tend to be smaller compared to demonstration plants.

<span class="mw-page-title-main">Waste-to-energy</span> Process of generating energy from the primary treatment of waste

Waste-to-energy (WtE) or energy-from-waste (EfW) is the process of generating energy in the form of electricity and/or heat from the primary treatment of waste, or the processing of waste into a fuel source. WtE is a form of energy recovery. Most WtE processes generate electricity and/or heat directly through combustion, or produce a combustible fuel commodity, such as methane, methanol, ethanol or synthetic fuels, often derived from the product syngas.

NeSSI is a global and open initiative sponsored by the Center for Process Analysis and Control (CPAC) at the University of Washington, in Seattle.

<span class="mw-page-title-main">Manufacturing engineering</span> Branch of engineering

Manufacturing engineering or production engineering is a branch of professional engineering that shares many common concepts and ideas with other fields of engineering such as mechanical, chemical, electrical, and industrial engineering. Manufacturing engineering requires the ability to plan the practices of manufacturing; to research and to develop tools, processes, machines and equipment; and to integrate the facilities and systems for producing quality products with the optimum expenditure of capital. Transitioning the product to manufacture it in volumes is considered part of product engineering.

Membrane bioreactors are combinations of some membrane processes like microfiltration or ultrafiltration with a biological wastewater treatment process, the activated sludge process. These technologies are now widely used for municipal and industrial wastewater treatment. The two basic membrane bioreactor configurations are the submerged membrane bioreactor and the side stream membrane bioreactor. In the submerged configuration, the membrane is located inside the biological reactor and submerged in the wastewater, while in a side stream membrane bioreactor, the membrane is located outside the reactor as an additional step after biological treatment.

Hydromethanation, [hahy-droh- meth-uh-ney-shuhn] is the process by which methane is produced through the combination of steam, carbonaceous solids and a catalyst in a fluidized bed reactor. The process, developed over the past 60 years by multiple research groups, enables the highly efficient conversion of coal, petroleum coke and biomass into clean, pipeline quality methane.

Bioproducts or bio-based products are materials, chemicals and energy derived from renewable biological material.

Syngas to gasoline plus (STG+) is a thermochemical process to convert natural gas, other gaseous hydrocarbons or gasified biomass into drop-in fuels, such as gasoline, diesel fuel or jet fuel, and organic solvents.

The circulating fluidized bed (CFB) is a type of Fluidized bed combustion that utilizes a recirculating loop for even greater efficiency of combustion. while achieving lower emission of pollutants. Reports suggest that up to 95% of pollutants can be absorbed before being emitted into the atmosphere. The technology is limited in scale however, due to its extensive use of limestone, and the fact that it produces waste byproducts.

<span class="mw-page-title-main">Smart manufacturing</span> Broad category of manufacturing

Smart manufacturing is a broad category of manufacturing that employs computer-integrated manufacturing, high levels of adaptability and rapid design changes, digital information technology, and more flexible technical workforce training. Other goals sometimes include fast changes in production levels based on demand, optimization of the supply chain, efficient production and recyclability. In this concept, as smart factory has interoperable systems, multi-scale dynamic modelling and simulation, intelligent automation, strong cyber security, and networked sensors.

Chemical looping reforming (CLR) and gasification (CLG) are the operations that involve the use of gaseous carbonaceous feedstock and solid carbonaceous feedstock, respectively, in their conversion to syngas in the chemical looping scheme. The typical gaseous carbonaceous feedstocks used are natural gas and reducing tail gas, while the typical solid carbonaceous feedstocks used are coal and biomass. The feedstocks are partially oxidized to generate syngas using metal oxide oxygen carriers as the oxidant. The reduced metal oxide is then oxidized in the regeneration step using air. The syngas is an important intermediate for generation of such diverse products as electricity, chemicals, hydrogen, and liquid fuels.

This glossary of nanotechnology is a list of definitions of terms and concepts relevant to nanotechnology, its sub-disciplines, and related fields.

References

  1. "Microprocesses - Sometimes Smaller is Better", S. S. Sofer, Chemical Processing, May 1987 ref Archived 2011-07-23 at the Wayback Machine
  2. “Year in Science, 2010”, Interview with Secretary of Energy, Steven Chu, Discover magazine, Jan-Feb 2011, p. 42.