Pythagoras number

Last updated

In mathematics, the Pythagoras number or reduced height of a field describes the structure of the set of squares in the field. The Pythagoras number p(K) of a field K is the smallest positive integer p such that every sum of squares in K is a sum of p squares.

Contents

A Pythagorean field is a field with Pythagoras number 1: that is, every sum of squares is already a square.

Examples

Properties

Notes

  1. Lam (2005) p. 36
  2. Lam (2005) p. 398
  3. Rajwade (1993) p. 44
  4. Rajwade (1993) p. 228
  5. Rajwade (1993) p. 261
  6. Lam (2005) p. 395
  7. Lam (2005) p. 396

Related Research Articles

Field (mathematics) Algebraic structure with addition, multiplication and division

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.

In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. The basic example of an ordered field is the field of real numbers, and every Dedekind-complete ordered field is isomorphic to the reals.

In mathematics, more specifically in the area of abstract algebra known as ring theory, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; that is, given any increasing sequence of left ideals:

In mathematics, a local field is a special type of field that is a locally compact topological field with respect to a non-discrete topology. Given such a field, an absolute value can be defined on it. There are two basic types of local fields: those in which the absolute value is Archimedean and those in which it is not. In the first case, one calls the local field an Archimedean local field, in the second case, one calls it a non-Archimedean local field. Local fields arise naturally in number theory as completions of global fields.

In mathematics, a quadratic form is a polynomial with terms all of degree two. For example,

Field theory is the branch of mathematics in which fields are studied. This is a glossary of some terms of the subject.

In mathematics, a Pisot–Vijayaraghavan number, also called simply a Pisot number or a PV number, is a real algebraic integer greater than 1 all of whose Galois conjugates are less than 1 in absolute value. These numbers were discovered by Axel Thue in 1912 and rediscovered by G. H. Hardy in 1919 within the context of diophantine approximation. They became widely known after the publication of Charles Pisot's dissertation in 1938. They also occur in the uniqueness problem for Fourier series. Tirukkannapuram Vijayaraghavan and Raphael Salem continued their study in the 1940s. Salem numbers are a closely related set of numbers.

Square (algebra) Result of multiplying a number, or other expression, by itself

In mathematics, a square is the result of multiplying a number by itself. The verb "to square" is used to denote this operation. Squaring is the same as raising to the power 2, and is denoted by a superscript 2; for instance, the square of 3 may be written as 32, which is the number 9. In some cases when superscripts are not available, as for instance in programming languages or plain text files, the notations x^2 or x**2 may be used in place of x2.

In mathematics, a real closed field is a field F that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers.

In mathematics, the characteristic of a ring R, often denoted char(R), is defined to be the smallest number of times one must use the ring's multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero.

In mathematics, in particular in field theory and real algebra, a formally real field is a field that can be equipped with a ordering that makes it an ordered field.

Hilbert's seventeenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by David Hilbert. It concerns the expression of positive definite rational functions as sums of quotients of squares. The original question may be reformulated as:

In number theory, zero-sum problems are certain kinds of combinatorial problems about the structure of a finite abelian group. Concretely, given a finite abelian group G and a positive integer n, one asks for the smallest value of k such that every sequence of elements of G of size k contains n terms that sum to 0.

In mathematics, a universal quadratic form is a quadratic form over a ring that represents every element of the ring. A non-singular form over a field which represents zero non-trivially is universal.

In mathematics, a Witt group of a field, named after Ernst Witt, is an abelian group whose elements are represented by symmetric bilinear forms over the field.

In mathematics, Hahn series are a type of formal infinite series. They are a generalization of Puiseux series and were first introduced by Hans Hahn in 1907. They allow for arbitrary exponents of the indeterminate so long as the set supporting them forms a well-ordered subset of the value group. Hahn series were first introduced, as groups, in the course of the proof of the Hahn embedding theorem and then studied by him as fields in his approach to Hilbert's seventeenth problem.

In algebra, a Pythagorean field is a field in which every sum of two squares is a square: equivalently it has Pythagoras number equal to 1. A Pythagorean extension of a field is an extension obtained by adjoining an element for some in . So a Pythagorean field is one closed under taking Pythagorean extensions. For any field there is a minimal Pythagorean field containing it, unique up to isomorphism, called its Pythagorean closure. The Hilbert field is the minimal ordered Pythagorean field.

In field theory, a branch of mathematics, the Stufes(F) of a field F is the least number of squares that sum to −1. If −1 cannot be written as a sum of squares, s(F) = . In this case, F is a formally real field. Albrecht Pfister proved that the Stufe, if finite, is always a power of 2, and that conversely every power of 2 occurs.

In mathematics, the universal invariant or u-invariant of a field describes the structure of quadratic forms over the field.

In mathematics, a quadratically closed field is a field in which every element has a square root.

References