Quantum

Last updated

In physics, a quantum (pl.: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. Quantum is a discrete quantity of energy proportional in magnitude to the frequency of the radiation it represents. The fundamental notion that a property can be "quantized" is referred to as "the hypothesis of quantization". [1] This means that the magnitude of the physical property can take on only discrete values consisting of integer multiples of one quantum. For example, a photon is a single quantum of light of a specific frequency (or of any other form of electromagnetic radiation). Similarly, the energy of an electron bound within an atom is quantized and can exist only in certain discrete values. [2] Atoms and matter in general are stable because electrons can exist only at discrete energy levels within an atom. Quantization is one of the foundations of the much broader physics of quantum mechanics. Quantization of energy and its influence on how energy and matter interact (quantum electrodynamics) is part of the fundamental framework for understanding and describing nature.

Contents

Etymology and discovery

The word quantum is the neuter singular of the Latin interrogative adjective quantus, meaning "how much". "Quanta", the neuter plural, short for "quanta of electricity" (electrons), was used in a 1902 article on the photoelectric effect by Philipp Lenard, who credited Hermann von Helmholtz for using the word in the area of electricity. However, the word quantum in general was well known before 1900, [3] e.g. quantum was used in E. A. Poe's Loss of Breath. It was often used by physicians, such as in the term quantum satis , "the amount which is enough". Both Helmholtz and Julius von Mayer were physicians as well as physicists. Helmholtz used quantum with reference to heat in his article [4] on Mayer's work, and the word quantum can be found in the formulation of the first law of thermodynamics by Mayer in his letter [5] dated July 24, 1841.

German Physicist and 1918 Nobel Prize for Physics recipient Max Planck (1858-1947) Max Planck (1858-1947).jpg
German Physicist and 1918 Nobel Prize for Physics recipient Max Planck (1858–1947)

In 1901, Max Planck used quanta to mean "quanta of matter and electricity", [6] gas, and heat. [7] In 1905, in response to Planck's work and the experimental work of Lenard (who explained his results by using the term quanta of electricity), Albert Einstein suggested that radiation existed in spatially localized packets which he called "quanta of light" ("Lichtquanta"). [8]

The concept of quantization of radiation was discovered in 1900 by Max Planck, who had been trying to understand the emission of radiation from heated objects, known as black-body radiation. By assuming that energy can be absorbed or released only in tiny, differential, discrete packets (which he called "bundles", or "energy elements"), [9] Planck accounted for certain objects changing color when heated. [10] On December 14, 1900, Planck reported his findings to the German Physical Society, and introduced the idea of quantization for the first time as a part of his research on black-body radiation. [11] As a result of his experiments, Planck deduced the numerical value of h, known as the Planck constant, and reported more precise values for the unit of electrical charge and the AvogadroLoschmidt number, the number of real molecules in a mole, to the German Physical Society. After his theory was validated, Planck was awarded the Nobel Prize in Physics for his discovery in 1918.

Quantization

While quantization was first discovered in electromagnetic radiation, it describes a fundamental aspect of energy not just restricted to photons. [12] In the attempt to bring theory into agreement with experiment, Max Planck postulated that electromagnetic energy is absorbed or emitted in discrete packets, or quanta. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Max Planck</span> German theoretical physicist (1858–1947)

Max Karl Ernst Ludwig Planck was a German theoretical physicist whose discovery of energy quanta won him the Nobel Prize in Physics in 1918.

A photon is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that always move at the speed of light when in vacuum. The photon belongs to the class of boson particles.

<span class="mw-page-title-main">Photoelectric effect</span> Emission of electrons when light hits a material

The photoelectric effect is the emission of electrons from a material caused by electromagnetic radiation (light). Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physics, solid state, and quantum chemistry to draw inferences about the properties of atoms, molecules and solids. The effect has found use in electronic devices specialized for light detection and precisely timed electron emission.

Wave–particle duality is the concept in quantum mechanics that quantum entities exhibit particle or wave properties according to the experimental circumstances. It expresses the inability of the classical concepts such as particle or wave to fully describe the behavior of quantum objects. During the 19th and early 20th centuries, light was found to behave as a wave, and then later discovered to have a particulate character, whereas electrons were found to act as particles, and then later discovered to have wavelike aspects. The concept of duality arose to name these contradictions.

<span class="mw-page-title-main">Wilhelm Wien</span> German physicist (1864–1928)

Wilhelm Carl Werner Otto Fritz Franz Wien was a German physicist who, in 1893, used theories about heat and electromagnetism to deduce Wien's displacement law, which calculates the emission of a blackbody at any temperature from the emission at any one reference temperature.

<span class="mw-page-title-main">Planck's law</span> Spectral density of light emitted by a black body

In physics, Planck's law describes the spectral density of electromagnetic radiation emitted by a black body in thermal equilibrium at a given temperature T, when there is no net flow of matter or energy between the body and its environment.

<span class="mw-page-title-main">Ultraviolet catastrophe</span> Classical physics prediction that black body radiation grows unbounded with frequency

The ultraviolet catastrophe, also called the Rayleigh–Jeans catastrophe, was the prediction of late 19th century to early 20th century classical physics that an ideal black body at thermal equilibrium would emit an unbounded quantity of energy as wavelength decreased into the ultraviolet range. The term "ultraviolet catastrophe" was first used in 1911 by Paul Ehrenfest, but the concept originated with the 1900 statistical derivation of the Rayleigh–Jeans law.

<span class="mw-page-title-main">Emission spectrum</span> Frequencies of light emitted by atoms or chemical compounds

The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to electrons making a transition from a high energy state to a lower energy state. The photon energy of the emitted photons is equal to the energy difference between the two states. There are many possible electron transitions for each atom, and each transition has a specific energy difference. This collection of different transitions, leading to different radiated wavelengths, make up an emission spectrum. Each element's emission spectrum is unique. Therefore, spectroscopy can be used to identify elements in matter of unknown composition. Similarly, the emission spectra of molecules can be used in chemical analysis of substances.

<i>Annalen der Physik</i> Academic journal

Annalen der Physik is one of the oldest scientific journals on physics; it has been published since 1799. The journal publishes original, peer-reviewed papers on experimental, theoretical, applied, and mathematical physics and related areas. The editor-in-chief is Stefan Hildebrandt. Prior to 2008, its ISO 4 abbreviation was Ann. Phys. (Leipzig), after 2008 it became Ann. Phys. (Berl.).

The old quantum theory is a collection of results from the years 1900–1925 which predate modern quantum mechanics. The theory was never complete or self-consistent, but was instead a set of heuristic corrections to classical mechanics. The theory has come to be understood as the semi-classical approximation to modern quantum mechanics. The main and final accomplishments of the old quantum theory were the determination of the modern form of the periodic table by Edmund Stoner and the Pauli exclusion principle which were both premised on the Arnold Sommerfeld enhancements to the Bohr model of the atom.

The history of special relativity consists of many theoretical results and empirical findings obtained by Albert A. Michelson, Hendrik Lorentz, Henri Poincaré and others. It culminated in the theory of special relativity proposed by Albert Einstein and subsequent work of Max Planck, Hermann Minkowski and others.

<i>Annus mirabilis</i> papers Published papers of Albert Einstein in 1905

The annus mirabilis papers are the four papers that Albert Einstein published in Annalen der Physik, a scientific journal, in 1905. These four papers were major contributions to the foundation of modern physics. They revolutionized science's understanding of the fundamental concepts of space, time, mass, and energy. Because Einstein published these remarkable papers in a single year, 1905 is called his annus mirabilis.

  1. The first paper explained the photoelectric effect, which established the energy of the light quanta , and was the only specific discovery mentioned in the citation awarding Einstein the 1921 Nobel Prize in Physics.
  2. The second paper explained Brownian motion, which established the Einstein relation and led reluctant physicists to accept the existence of atoms.
  3. The third paper introduced Einstein's theory of special relativity, which used the universal constant speed of light to derive the Lorentz transformations.
  4. The fourth, a consequence of the theory of special relativity, developed the principle of mass–energy equivalence, expressed in the famous equation and which led to the discovery and use of atomic energy decades later.

Quantum mechanics is the study of matter and its interactions with energy on the scale of atomic and subatomic particles. By contrast, classical physics explains matter and energy only on a scale familiar to human experience, including the behavior of astronomical bodies such as the moon. Classical physics is still used in much of modern science and technology. However, towards the end of the 19th century, scientists discovered phenomena in both the large (macro) and the small (micro) worlds that classical physics could not explain. The desire to resolve inconsistencies between observed phenomena and classical theory led to a revolution in physics, a shift in the original scientific paradigm: the development of quantum mechanics.

First quantization is a procedure for converting equations of classical particle equations into quantum wave equations. The companion concept of second quantization converts classical field equations in to quantum field equations.

The history of quantum mechanics is a fundamental part of the history of modern physics. The major chapters of this history begin with the emergence of quantum ideas to explain individual phenomena—blackbody radiation, the photoelectric effect, solar emission spectra—an era called the Old or Older quantum theories. Building on the technology developed in classical mechanics, the invention of wave mechanics by Erwin Schrödinger and expansion by many others triggers the "modern" era beginning around 1925. Paul Dirac's relativistic quantum theory work lead him to explore quantum theories of radiation, culminating in quantum electrodynamics, the first quantum field theory. The history of quantum mechanics continues in the history of quantum field theory. The history of quantum chemistry, theoretical basis of chemical structure, reactivity, and bonding, interlaces with the events discussed in this article.

In the history of quantum mechanics, the Bohr–Kramers–Slater (BKS) theory was perhaps the final attempt at understanding the interaction of matter and electromagnetic radiation on the basis of the so-called old quantum theory, in which quantum phenomena are treated by imposing quantum restrictions on classically describable behaviour. It was advanced in 1924, and sticks to a classical wave description of the electromagnetic field. It was perhaps more a research program than a full physical theory, the ideas that are developed not being worked out in a quantitative way. The purpose of BKS theory was to disprove Einstein's hypothesis of the light quantum.

<span class="mw-page-title-main">Alfred Bucherer</span> German physicist

Alfred Heinrich Bucherer was a German physicist, who is known for his experiments on relativistic mass. He also was the first who used the phrase "theory of relativity" for Einstein's theory of special relativity.

The Planck constant, or Planck's constant, denoted by , is a fundamental physical constant of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a matter wave equals the Planck constant divided by the associated particle momentum.

In 1923, American physicist William Duane presented a discrete momentum-exchange model of the reflection of X-ray photons by a crystal lattice. Duane showed that such a model gives the same scattering angles as the ones calculated via a wave diffraction model, see Bragg's Law.

A hallmark of Albert Einstein's career was his use of visualized thought experiments as a fundamental tool for understanding physical issues and for elucidating his concepts to others. Einstein's thought experiments took diverse forms. In his youth, he mentally chased beams of light. For special relativity, he employed moving trains and flashes of lightning to explain his most penetrating insights. For general relativity, he considered a person falling off a roof, accelerating elevators, blind beetles crawling on curved surfaces and the like. In his debates with Niels Bohr on the nature of reality, he proposed imaginary devices intended to show, at least in concept, how the Heisenberg uncertainty principle might be evaded. In a profound contribution to the literature on quantum mechanics, Einstein considered two particles briefly interacting and then flying apart so that their states are correlated, anticipating the phenomenon known as quantum entanglement.

References

  1. Wiener, N. (1966). Differential Space, Quantum Systems, and Prediction. Cambridge, Massachusetts: The Massachusetts Institute of Technology Press
  2. Rovelli, Carlo (January 2017). Reality is not what it seems: the elementary structure of things. Translated by Carnell, Simon; Segre, Erica (1st American ed.). New York, New York: Riverhead Books. pp. 109–130. ISBN   978-0-7352-1392-0.
  3. E. Cobham Brewer 1810–1897. Dictionary of Phrase and Fable. 1898. Archived 2017-06-30 at the Wayback Machine
  4. E. Helmholtz, Robert Mayer's Priorität Archived 2015-09-29 at the Wayback Machine (in German)
  5. Herrmann, Armin (1991). "Heimatseite von Robert J. Mayer" (in German). Weltreich der Physik, Gent-Verlag. Archived from the original on 1998-02-09.
  6. Planck, M. (1901). "Ueber die Elementarquanta der Materie und der Elektricität". Annalen der Physik (in German). 309 (3): 564–566. Bibcode:1901AnP...309..564P. doi:10.1002/andp.19013090311. Archived from the original on 2023-06-24. Retrieved 2019-09-16 via Zenodo.
  7. Planck, Max (1883). "Ueber das thermodynamische Gleichgewicht von Gasgemengen". Annalen der Physik (in German). 255 (6): 358–378. Bibcode:1883AnP...255..358P. doi:10.1002/andp.18832550612. Archived from the original on 2021-01-21. Retrieved 2019-07-05 via Zenodo.
  8. Einstein, A. (1905). "Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt" (PDF). Annalen der Physik (in German). 17 (6): 132–148. Bibcode:1905AnP...322..132E. doi: 10.1002/andp.19053220607 . Archived (PDF) from the original on 2015-09-24. Retrieved 2010-08-26.. A partial English translation Archived 2021-01-21 at the Wayback Machine is available from Wikisource.
  9. Max Planck (1901). "Ueber das Gesetz der Energieverteilung im Normalspectrum (On the Law of Distribution of Energy in the Normal Spectrum)". Annalen der Physik. 309 (3): 553. Bibcode:1901AnP...309..553P. doi: 10.1002/andp.19013090310 . Archived from the original on 2008-04-18.
  10. Brown, T., LeMay, H., Bursten, B. (2008). Chemistry: The Central Science Upper Saddle River, New Jersey: Pearson Education ISBN   0-13-600617-5
  11. Klein, Martin J. (1961). "Max Planck and the beginnings of the quantum theory". Archive for History of Exact Sciences. 1 (5): 459–479. doi:10.1007/BF00327765. S2CID   121189755.
  12. Parker, Will (2005-02-11). "Real-World Quantum Effects Demonstrated". ScienceAGoGo. Retrieved 2023-08-20.
  13. Modern Applied Physics-Tippens third edition; McGraw-Hill.

Further reading