RH-32

Last updated

The RH-32 was a radiation-hardened 32-bit MIPS R3000 based microprocessor chipset developed by the USAF Rome Laboratories [1] for the Ballistic Missile Defense Agency, and produced by Honeywell (later, TRW) for Aerospace applications. It achieves a throughput of 20 MIPS. It was a three-chip set, consisting of Central Processing Unit, Floating Point Unit, and Cache Memory. [2]

Related Research Articles

MIPS is a family of reduced instruction set computer (RISC) instruction set architectures (ISA) developed by MIPS Computer Systems, now MIPS Technologies, based in the United States.

The Intel i860 is a RISC microprocessor design introduced by Intel in 1989. It is one of Intel's first attempts at an entirely new, high-end instruction set architecture since the failed Intel iAPX 432 from the beginning of the 1980s. It was the world's first million-transistor chip. It was released with considerable fanfare, slightly obscuring the earlier Intel i960, which was successful in some niches of embedded systems. The i860 never achieved commercial success and the project was terminated in the mid-1990s.

The PowerPC 7xx is a family of third generation 32-bit PowerPC microprocessors designed and manufactured by IBM and Motorola. This family is called the PowerPC G3 by Apple Computer, which introduced it on November 10, 1997. The term "PowerPC G3" is often, and incorrectly, imagined to be a microprocessor when in fact a number of microprocessors from different vendors have been used. Such designations were applied to Mac computers such as the PowerBook G3, the multicolored iMacs, iBooks and several desktops, including both the Beige and Blue and White Power Macintosh G3s. The low power requirements and small size made the processors ideal for laptops and the name lived out its last days at Apple in the iBook.

Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space, around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.

<span class="mw-page-title-main">Emotion Engine</span> Central processing unit by Sony Computer Entertainment and Toshiba

The Emotion Engine is a central processing unit developed and manufactured by Sony Computer Entertainment and Toshiba for use in the PlayStation 2 video game console. It was also used in early PlayStation 3 models sold in Japan and North America to provide PlayStation 2 game support. Mass production of the Emotion Engine began in 1999 and ended in late 2012 with the discontinuation of the PlayStation 2.

<span class="mw-page-title-main">AMD Am29000</span> Family of RISC microprocessors and microcontrollers

The AMD Am29000, commonly shortened to 29k, is a family of 32-bit RISC microprocessors and microcontrollers developed and fabricated by Advanced Micro Devices (AMD). Based on the seminal Berkeley RISC, the 29k added a number of significant improvements. They were, for a time, the most popular RISC chips on the market, widely used in laser printers from a variety of manufacturers.

<span class="mw-page-title-main">RISC Single Chip</span>

The RISC Single Chip, or RSC, is a single-chip microprocessor developed and fabricated by International Business Machines (IBM). The RSC was a feature-reduced single-chip implementation of the POWER1, a multi-chip central processing unit (CPU) which implemented the POWER instruction set architecture (ISA). It was used in entry-level workstation models of the IBM RS/6000 family, such as the Model 220 and 230.

<span class="mw-page-title-main">R10000</span> MIPS microprocessor

The R10000, code-named "T5", is a RISC microprocessor implementation of the MIPS IV instruction set architecture (ISA) developed by MIPS Technologies, Inc. (MTI), then a division of Silicon Graphics, Inc. (SGI). The chief designers are Chris Rowen and Kenneth C. Yeager. The R10000 microarchitecture is known as ANDES, an abbreviation for Architecture with Non-sequential Dynamic Execution Scheduling. The R10000 largely replaces the R8000 in the high-end and the R4400 elsewhere. MTI was a fabless semiconductor company; the R10000 was fabricated by NEC and Toshiba. Previous fabricators of MIPS microprocessors such as Integrated Device Technology (IDT) and three others did not fabricate the R10000 as it was more expensive to do so than the R4000 and R4400.

<span class="mw-page-title-main">R3000</span> RISC microprocessor

The R3000 is a 32-bit RISC microprocessor chipset developed by MIPS Computer Systems that implemented the MIPS I instruction set architecture (ISA). Introduced in June 1988, it was the second MIPS implementation, succeeding the R2000 as the flagship MIPS microprocessor. It operated at 20, 25 and 33.33 MHz.

<span class="mw-page-title-main">R4000</span> MIPS microprocessor

The R4000 is a microprocessor developed by MIPS Computer Systems that implements the MIPS III instruction set architecture (ISA). Officially announced on 1 October 1991, it was one of the first 64-bit microprocessors and the first MIPS III implementation. In the early 1990s, when RISC microprocessors were expected to replace CISC microprocessors such as the Intel i486, the R4000 was selected to be the microprocessor of the Advanced Computing Environment (ACE), an industry standard that intended to define a common RISC platform. ACE ultimately failed for a number of reasons, but the R4000 found success in the workstation and server markets.

<span class="mw-page-title-main">R5000</span>

The R5000 is a 64-bit, bi-endian, superscalar, in-order execution 2-issue design microprocessor, that implements the MIPS IV instruction set architecture (ISA) developed by Quantum Effect Design (QED) in 1996. The project was funded by MIPS Technologies, Inc (MTI), also the licensor. MTI then licensed the design to Integrated Device Technology (IDT), NEC, NKK, and Toshiba. The R5000 succeeded the QED R4600 and R4700 as their flagship high-end embedded microprocessor. IDT marketed its version of the R5000 as the 79RV5000, NEC as VR5000, NKK as the NR5000, and Toshiba as the TX5000. The R5000 was sold to PMC-Sierra when the company acquired QED. Derivatives of the R5000 are still in production today for embedded systems.

The R8000 is a microprocessor chipset developed by MIPS Technologies, Inc. (MTI), Toshiba, and Weitek. It was the first implementation of the MIPS IV instruction set architecture. The R8000 is also known as the TFP, for Tremendous Floating-Point, its name during development.

The PowerPC 600 family was the first family of PowerPC processors built. They were designed at the Somerset facility in Austin, Texas, jointly funded and staffed by engineers from IBM and Motorola as a part of the AIM alliance. Somerset was opened in 1992 and its goal was to make the first PowerPC processor and then keep designing general purpose PowerPC processors for personal computers. The first incarnation became the PowerPC 601 in 1993, and the second generation soon followed with the PowerPC 603, PowerPC 604 and the 64-bit PowerPC 620.

<span class="mw-page-title-main">NEC V60</span> CISC microprocessor

The NEC V60 is a CISC microprocessor manufactured by NEC starting in 1986. Several improved versions were introduced with the same instruction set architecture (ISA), the V70 in 1987, and the V80 and AFPP in 1989. They were succeeded by the V800 product families, which is currently produced by Renesas Electronics.

The RHPPC is a radiation hardened processor based on PowerPC 603e technology licensed from Motorola and manufactured by Honeywell. The RHPPC is equivalent to the commercial PowerPC 603e processor with the minor exceptions of the phase locked loop (PLL) and the processor version register (PVR). The RHPPC processor is compatible with the PowerPC architecture, the PowerPC 603e programmers interface and is also supported by common PowerPC software tools and embedded operating systems, like VxWorks.

<span class="mw-page-title-main">Gekko (processor)</span> CPU for the GameCube

Gekko is a superscalar out-of-order 32-bit PowerPC microprocessor custom-made by IBM in 2000 for Nintendo to use as the CPU in their sixth generation game console, the GameCube, and later the Triforce Arcade Board.

<span class="mw-page-title-main">Alpha 21164</span> Microprocessor

The Alpha 21164, also known by its code name, EV5, is a microprocessor developed and fabricated by Digital Equipment Corporation that implemented the Alpha instruction set architecture (ISA). It was introduced in January 1995, succeeding the Alpha 21064A as Digital's flagship microprocessor. It was succeeded by the Alpha 21264 in 1998.

The x704 is a microprocessor that implements the 32-bit version of the PowerPC instruction set architecture (ISA) developed by Exponential Technology. The microprocessor was notable for its high clock frequency in the range of 400 to 533 MHz, its use of bipolar transistors for logic and CMOS circuits for memory, and its failure to see use in an Apple Macintosh, the opposite of what industry observers such as Microprocessor Report expected. Exponential Technology eventually failed as a result of the x704's lack of success, but some of its former employees founded Intrinsity, a start-up that developed a high clock frequency MIPS implementation, FastMATH. The company has been acquired by Apple and licensed Fast14 dynamic logic to third parties such as ATI for their GPUs.

The KOMDIV-32 is a family of 32-bit microprocessors developed and manufactured by the Scientific Research Institute of System Development (NIISI) of the Russian Academy of Sciences. The manufacturing plant of NIISI is located in Dubna on the grounds of the Kurchatov Institute. The KOMDIV-32 processors are intended primarily for spacecraft applications and many of them are radiation hardened (rad-hard).

Since 1985, many processors implementing some version of the MIPS architecture have been designed and used widely.

References

  1. Schechter, Joanne. "Will commercial strategy deliver cost, time savings? (military microprocessors)(includes related article on SGS-Thomson's new transputers)." EDN. Canon Communications L.L.C. 1991. http://www.highbeam.com/doc/1G1-11230801.html Archived 2015-09-24 at the Wayback Machine
  2. G.R. Brown, L.F. Hoffmann, S.C. Leavy, J.A. Mogensen, J. Brichacek (1997-07-24). "Honeywell radiation hardened 32-bit processor central processing unit, floating point processor, and cache memory dose rate and single event effects test results" (pdf). 1997 IEEE Radiation Effects Data Workshop NSREC Snowmass 1997. Workshop Record Held in conjunction with IEEE Nuclear and Space Radiation Effects Conference. IEEE. pp. 110–115. doi:10.1109/REDW.1997.629808. ISBN   0-7803-4061-2. S2CID   60521143 . Retrieved 2022-09-20.{{cite book}}: CS1 maint: multiple names: authors list (link)