Respirator fit test

Last updated
F.H. Varley painting depicts a training exercise in Seaford, England. Soldiers emerge from a gas hut wearing respirators. Frederick Varley - Gas Chamber at Seaford.jpg
F.H. Varley painting depicts a training exercise in Seaford, England. Soldiers emerge from a gas hut wearing respirators.

A respirator fit test checks whether a respirator properly fits the face of someone who wears it. The fitting characteristic of a respirator is the ability of the mask to separate a worker's respiratory system from ambient air.

Contents

This is achieved by tightly pressing the mask flush against the face (without gaps) to ensure an efficient seal on the mask perimeter. Because wearers cannot be protected if there are gaps, it is necessary to test the fit before entering into contaminated air. Multiple forms of the test exist.

Scientific studies have shown that if the mask size and shape is correctly fitted to the employees’ face, they will be better protected in hazardous workplaces. [1] Facial hair such as a beard can interfere with proper fit. [2]

History

Fit test in US Navy US Navy 061220-N-8146B-001 The Safety Department uses a plastic bag to conduct respirator fit testing aboard the amphibious assault ship USS Boxer (LHD 4).jpg
Fit test in US Navy

The effectiveness of various types of respirators was measured in laboratories and in the workplace. [3] These measurements showed that in practice, the effectiveness of negative pressure tight fitting respiratory protective devices (RPD) depends on leakage between mask and face, rather than the filters/canisters. [4] This decrease in efficiency due to leakage manifested on a large scale during World War I, when gas masks were used to protect against chemical weapons. Poor fit or poorly situated masks could be fatal. The Russian army began to use short-term exposure to chlorine at low concentrations to solve this problem in 1917. [5] [6] Such testing helped convince the soldiers that their gas masks were reliable - because respirators were a novelty. [7] Later, industrial workers were trained in gas chambers in the USSR (in preparation for the Second World War), [8] [9] [10] and late [11] '. German firefighters used a similar test between the First and Second World Wars. [12] Diluted chloropicrin was used to test industrial gas masks. [13] The Soviet Army used chloropicrin in tents with a floor space of 16 square meters. [14]

Fit test methods

Respirator selection and use are regulated by national legislation in many countries. [15] [16] [17] These requirements include a test of negative pressure mask for each individual wearer.

Qualitative and quantitative fit test methods (QLFT & QNFT) exist. Detailed descriptions are given in the US standard, developed by Occupational Safety and Health Administration OSHA. [15] This standard regulates respirator selection and organization (Appendix A describes fit testing). Compliance with this standard is mandatory for US employers.

Qualitative

Irritant smoke fit test US Navy 110429-N-7326M-028 Boatswain's Mate 3rd Class Shaka K. Farrier dons a respirator as irritant smoke is released into the air as part of a re.jpg
Irritant smoke fit test

These methods use the reaction of workers to the taste or smell of a special material (if it leaks into mask) - gas, vapors or aerosols. Such reactions are subjective, making this test dependent on the subject reporting results honestly. A qualitative fit test starts with an unfiltered/non-respirator sampling of the substance of choice to verify that the subject can detect it accurately. Substances include:

Quantitative

PortaCount Plus (TSI) - device for ambient aerosol fit test Kolichestvennaia proverka izoliruiushchikh svoistv QLFT priborom PortaCount Plus.jpg
PortaCount Plus (TSI) - device for ambient aerosol fit test
Air Techniques International TDA-99M used for generated aerosol fit testing US Navy 031205-N-6213R-009 Sailors aboard the aircraft carrier USS John C. Stennis (CVN 74) don MCU-2P gas masks under a respirator testing shroud to assess for proper fit.jpg
Air Techniques International TDA-99M used for generated aerosol fit testing

Equipment can determine the concentrations of a control substance (challenge agent) inside and outside the mask or to determine the flow rate of air flowing under the mask. Quantitative methods are more accurate and reliable than qualitative methods because they do not rely on subjective sensing of the challenge agent. Perhaps the most important consideration is the fact that unlike qualitative methods, the quantitative methods provide a data-based, defensible metric.

Ambient Aerosol Method

An aerosol test is carried out by measuring the internal and external aerosol concentrations. The aerosol can be artificially created (to check the mask), or a natural atmospheric component. The ratio of external concentration to the concentration under the mask is called a fit factor (FF). [19] U.S. law requires employers to offer employees a mask with large enough fit factor. For half face-piece masks (used when the concentration of harmful substances is not more than 10 PEL), the fit factor should not be less than 100; and for full face masks (not more than 50 PEL), the fit factor should not be less than 500. The safety factor of 10 compensates for the difference between testing and workplace conditions. To use an atmospheric aerosol one needs a PortaCount or AccuFIT device. These devices increase the size of the smallest particles through a process of vapor condensation (Condensation Particle Counting or CPC), and then determines their concentration (by count). Aerosols may be: sodium chloride, calcium carbonate, and others. This method has been used as gold standard for determining whether or not a given respirator fits a healthcare worker in healthcare settings and research laboratories. [20] [21] [22] [23]

Recently OSHA approved a Fast Fit Protocol which enables the AAC/CPC (Ambient Aerosol Concentration/Condensation Particle Counting) method to be performed in less than three minutes. The major advantage of the AAC/CPC method is that the test subject is moving and breathing while the fit factor is being measured. This dynamic measurement is more representative of the actual conditions under which the respirator is used in the workplace.

Generated Aerosol Method

Flow (pressure) methods

These methods appeared later than aerosol. When a worker inhales, a portion of the aerosol is deposited in their respiratory organs, and the concentration measured during the exhalation becomes lower than during inhalation. During inhalation leaked unfiltered air trickles under the mask, not actually mixing with air under the mask. If such a stream collides with the sampling probe, the measured concentration becomes higher than the actual value. But if the trickle does not come into contact with a probe the concentration becomes lower.

Control Negative Pressure (CNP) directly measures facepiece leakage. This measurement tells you how much air has leaked into the respirator, and this is converted into a fit factor. Using a challenge pressure of 53.8 – 93.1 L/min, the CNP devices stress the mask as an employee would while breathing heavily under extreme physical conditions. The manufacturer of the CNP device claims that the use of air as a standard (non-varying) gaseous challenge agent provides a more rigorous test of mask fit than an aerosol agent. If air leaks into a respirator, there is a chance that the particles, vapors, or gas contaminants also may leak in. Recently-approved Redon protocols allow a fit test to be performed in under 3 minutes.[ citation needed ] The CNP Method of fit testing is OSHA, NFPA and ISO certified (among others).

Dichot method differs from CNP in that common filters are installed on the mask and the air is pumped out from the mask at high speed. In this case, a vacuum exists under the mask. The degree of negative pressure depends on the resistance of the filters and on the amount of leaking air. The resistance of the filter is measured with a sealed attachment of the mask to a dummy. This allows the operator to determine the amount of air leaking through the gaps.

Industry

U.S. law began to require employers to assign and test a mask for each employee prior to assignment to a position requiring the use of a respirator and thereafter every 12 months, and optionally, in case of circumstances that could affect fit (injury, tooth loss, etc.). [18] Other developed countries have similar requirements. [17] [24] A U.S. study showed that this requirement was fulfilled by almost all large enterprises. In small enterprises, with fewer than 10 workers, it was broken by about half of employers in 2001. [25] The main reason for such violations may be the cost of specialized equipment for quantitative fit tests, insufficient accuracy of qualitative fit tests and the fact that small organizations have fewer rigorous compliance processes.

Comparison

The main advantage of qualitative fit test methods is the low cost of equipment, while their main drawback is their modest precision, and that they cannot be used to test tight-fitting respirators that are intended for use in atmospheres that exceed 10 PEL (due to the low sensitivity). To reduce the risk of choosing a respirator with poor fit, the mask needs to have a sufficiently high fitting characteristic. Multiple masks must be examined to find the "most reliable", although poor test protocols may give incorrect results. Re-checks require time and increase costs. In 2001, the most commonly used QLFT was irritant smoke and saccharin, but in 2004, NIOSH advised against using irritant smoke.

CNP is a relatively inexpensive and fast method among quantitative methods. [26] However, it is not possible to fit test the disposable filtering face-piece mask (such as the N95, N99, and N100 masks) with CNP. Fit tests with an atmospheric aerosol may be used on any respirator, but the cost of earlier devices (PortaCount) and the duration of the test was slightly greater than CNP. However the newer OSHA Fast Fit Protocols for CNC methods, and introduction of newer instruments, have made all quantitative fit test devices equivalent in price and time required for testing. The CNP method has at present about 15% of the fit test market in industry. [25] The Current CNC instruments are the PortaCount 8040 and the AccuFIT 9000.

User seal checks and respirator training should be done before fit testing. Obuchenie ispol'zovaniiu SIZOD (proverka pravil'nosti odevaniia izbytochnym davleniem).jpg
User seal checks and respirator training should be done before fit testing.
Fit test methods for various masks [15] [27] [28]
Fit test methodRespirator typesDevices for testing
Filtering half facepieceElastomeric half facepiece respirators and elastomeric full facepiece mask, used in workplaces with concentrations of contaminants up to 10 PELElastomeric full facepiece mask, used in workplaces with concentrations of contaminants up to 50 PEL
Qualititative fit test methods
Isoamyl acetateUnlikely to pass [lower-alpha 1] YesNoAllegro-0202 et al.
SaccharinYesYesNo3М FT-10 et al.
BitrexYesYesNo3М FT-30 et al.
Irritant smoke [lower-alpha 2] Class-100 filters only [28] YesNoAllegro-2050, VeriFit, RAE 10-123-01 et al.
Quantitative fit test methods
Control Negative Pressure (CNP) [lower-alpha 3] Impossible to pass [lower-alpha 4] YesYesFitTester 3000 (DNI Nevada/OHD), Quantifit (OHD)
Ambient Aerosol method (CPC)YesYesYesPortaCount, Accufit 9000
Generated Aerosol method (Aerosol Photometer)Oil-resistant filters only [lower-alpha 5] YesYesTDA-99M, TSI 8587A
  1. Although called 'Banana oil,' implying it could be used with oil resistant filters, the protocol requires organic vapor cartridges, according to the US Navy. [28] Organic vapor cartridges are not found on filtering facepiece respirators.
  2. Not recommended by NIOSH. [29]
  3. CNP with modeled breathing rate. The status of Quantafit (Dynatech Frontier) CNP modeled decay rate is unknown. [30]
  4. CNP machines cannot test respirators where the entire assembly is penetrable by air, like a filtering facepiece.
  5. Generated aerosols use DOP or PAO as a test agent, similar to the oil used during initial respirator approval. [28]

Related Research Articles

<span class="mw-page-title-main">Gas mask</span> Protection from inhaling airborne pollutants and toxic gases

A gas mask is an item of personal protective equipment used to protect the wearer from inhaling airborne pollutants and toxic gases. The mask forms a sealed cover over the nose and mouth, but may also cover the eyes and other vulnerable soft tissues of the face. Most gas masks are also respirators, though the word gas mask is often used to refer to military equipment, the scope used in this article. The gas mask only protects the user from digesting, inhaling, and contact through the eyes. Most combined gas mask filters will last around 8 hours in a biological or chemical situation. Filters against specific chemical agents can last up to 20 hours.

<span class="mw-page-title-main">Personal protective equipment</span> Equipment designed to help protect an individual from hazards

Personal protective equipment (PPE) is protective clothing, helmets, goggles, or other garments or equipment designed to protect the wearer's body from injury or infection. The hazards addressed by protective equipment include physical, electrical, heat, chemical, biohazards, and airborne particulate matter. Protective equipment may be worn for job-related occupational safety and health purposes, as well as for sports and other recreational activities. Protective clothing is applied to traditional categories of clothing, and protective gear applies to items such as pads, guards, shields, or masks, and others. PPE suits can be similar in appearance to a cleanroom suit.

<span class="mw-page-title-main">Surgical mask</span> Mouth and nose cover against bacterial aerosols

A surgical mask, also known by other names such as a medical face mask or procedure mask, is a personal protective equipment used by healthcare professionals that serves as a mechanical barrier that interferes with direct airflow in and out of respiratory orifices. This helps reduce airborne transmission of pathogens and other aerosolized contaminants between the wearer and nearby people via respiratory droplets ejected when sneezing, coughing, forceful expiration or unintentionally spitting when talking, etc. Surgical masks may be labeled as surgical, isolation, dental or medical procedure masks.

<span class="mw-page-title-main">Respirator</span> Device worn to protect the user from inhaling contaminants

A respirator is a device designed to protect the wearer from inhaling hazardous atmospheres including fumes, vapours, gases and particulate matter such as dusts and airborne pathogens such as viruses. There are two main categories of respirators: the air-purifying respirator, in which respirable air is obtained by filtering a contaminated atmosphere, and the air-supplied respirator, in which an alternate supply of breathable air is delivered. Within each category, different techniques are employed to reduce or eliminate noxious airborne contaminants.

<span class="mw-page-title-main">Immediately dangerous to life or health</span> Exposure to dangerous levels of airborne contaminants

The term immediately dangerous to life or health (IDLH) is defined by the US National Institute for Occupational Safety and Health (NIOSH) as exposure to airborne contaminants that is "likely to cause death or immediate or delayed permanent adverse health effects or prevent escape from such an environment." Examples include smoke or other poisonous gases at sufficiently high concentrations. It is calculated using the LD50 or LC50. The Occupational Safety and Health Administration (OSHA) regulation defines the term as "an atmosphere that poses an immediate threat to life, would cause irreversible adverse health effects, or would impair an individual's ability to escape from a dangerous atmosphere."

<span class="mw-page-title-main">Chemical cartridge</span> Container that cleans pollution from air inhaled through it

A respirator cartridge or canister is a type of filter that removes gases, volatile organic compounds (VOCs), and other vapors from air through adsorption, absorption, or chemisorption. It is one of two basic types of filters used by air-purifying respirators. The other is a mechanical filter, which removes only particulates. Hybrid filters combine the two.

The National Personal Protective Technology Laboratory (NPPTL) is a research center within the National Institute for Occupational Safety and Health located in Pittsburgh, Pennsylvania, devoted to research on personal protective equipment (PPE). The NPPTL was created in 2001 at the request of the U.S. Congress, in response to a recognized need for improved research in PPE and technologies. It focuses on experimentation and recommendations for respirator masks, by ensuring a level of standard filter efficiency, and develops criteria for testing and developing PPE.

<span class="mw-page-title-main">NIOSH air filtration rating</span> U.S. rating of respirators such as face masks

The NIOSH air filtration rating is the U.S. National Institute for Occupational Safety and Health (NIOSH)'s classification of filtering respirators. The ratings describe the ability of the device to protect the wearer from solid and liquid particulates in the air. The certification and approval process for respiratory protective devices is governed by Part 84 of Title 42 of the Code of Federal Regulations. Respiratory protective devices so classified include air-purifying respirators (APR) such as filtering facepiece respirators and chemical protective cartridges that have incorporated particulate filter elements.

<span class="mw-page-title-main">Powered air-purifying respirator</span> Full-face respirator that provides filtered air to the wearer using an electric fan

A powered air-purifying respirator (PAPR) is a type of respirator used to safeguard workers against contaminated air. PAPRs consist of a headgear-and-fan assembly that takes ambient air contaminated with one or more type of pollutant or pathogen, actively removes (filters) a sufficient proportion of these hazards, and then delivers the clean air to the user's face or mouth and nose. They have a higher assigned protection factor than filtering facepiece respirators such as N95 masks. PAPRs are sometimes called positive-pressure masks, blower units, or just blowers.

<span class="mw-page-title-main">Respirator assigned protection factors</span>

The respiratory protective devices (RPD) can protect workers only if their protective properties are adequate to the conditions in the workplace. Therefore, specialists have developed criteria for the selection of proper, adequate respirators, including the Assigned Protection Factors (APF) - the decrease of the concentration of harmful substances in the inhaled air, which to be provided with timely and proper use of a certified respirator of certain types (design) by taught and trained workers, when the employer performs an effective respiratory protective device programme.

<span class="mw-page-title-main">Workplace respirator testing</span> Testing of respirators in real life conditions

Respirators, also known as respiratory protective equipment (RPE) or respiratory protective devices (RPD), are used in some workplaces to protect workers from air contaminants. Initially, respirator effectiveness was tested in laboratories, but in the late 1960s it was found that these tests gave misleading results regarding the level of protection provided. In the 1970s, workplace-based respirator testing became routine in industrialized countries, leading to a dramatic reduction in the claimed efficacy of many respirator types and new guidelines on how to select the appropriate respirator for a given environment.

The health and safety hazards of nanomaterials include the potential toxicity of various types of nanomaterials, as well as fire and dust explosion hazards. Because nanotechnology is a recent development, the health and safety effects of exposures to nanomaterials, and what levels of exposure may be acceptable, are subjects of ongoing research. Of the possible hazards, inhalation exposure appears to present the most concern, with animal studies showing pulmonary effects such as inflammation, fibrosis, and carcinogenicity for some nanomaterials. Skin contact and ingestion exposure, and dust explosion hazards, are also a concern.

<span class="mw-page-title-main">N95 respirator</span> Particulate respirator meeting the N95 standard

An N95 respirator is a particulate-filtering facepiece respirator or elastomeric filter that meets the U.S. National Institute for Occupational Safety and Health (NIOSH) N95 classification of air filtration, meaning that it filters at least 95% of airborne particles that have a mass median aerodynamic diameter of 0.3 micrometers under 42 CFR Part 84. This standard does not require that the respirator be resistant to oil; two other standards, R95 and P95, add that requirement. The N95 type is the most common particulate-filtering facepiece respirator. It is an example of a mechanical filter respirator, which provides protection against particulates but not against gases or vapors. An authentic N95 respirator is marked with the text "NIOSH" or the NIOSH logo, the filter class ("N95"), and, for filtering facepiece respirators, a "TC" approval number of the form 84A-####, the approval number. All N95 respirators, regardless of type, must be listed on the NIOSH Certified Equipment List (CEL) or the NIOSH Trusted-Source page, and it must have headbands instead of ear loops.

<span class="mw-page-title-main">Workplace hazard controls for COVID-19</span> Prevention measures for COVID-19

Hazard controls for COVID-19 in workplaces are the application of occupational safety and health methodologies for hazard controls to the prevention of COVID-19. Vaccination is the most effective way to protect against severe illness or death from COVID-19. Multiple layers of controls are recommended, including measures such as remote work and flextime, increased ventilation, personal protective equipment (PPE) and face coverings, social distancing, and enhanced cleaning programs.

<span class="mw-page-title-main">Mechanical filter (respirator)</span> Air-filtering face masks or mask attachments

Mechanical filters are a class of filter for air-purifying respirators that mechanically stops particulates from reaching the wearer's nose and mouth. They come in multiple physical forms.

<span class="mw-page-title-main">Face masks during the COVID-19 pandemic</span> Health control procedure against COVID-19

During the COVID-19 pandemic, face masks or coverings, including N95, FFP2, surgical, and cloth masks, have been employed as public and personal health control measures against the spread of SARS-CoV-2, the virus that causes COVID-19.

<span class="mw-page-title-main">Source control (respiratory disease)</span> Strategy for reducing disease transmission

Source control is a strategy for reducing disease transmission by blocking respiratory secretions produced through speaking, coughing, sneezing or singing. Surgical masks are commonly used for this purpose, with cloth face masks recommended for use by the public only in epidemic situations when there are shortages of surgical masks. In addition, respiratory etiquette such as covering the mouth and nose with a tissue when coughing can be considered source control. In diseases transmitted by droplets or aerosols, understanding air flow, particle and aerosol transport may lead to rational infrastructural source control measures that minimize exposure of susceptible persons.

<span class="mw-page-title-main">Elastomeric respirator</span> Respirator with a rubber face seal

Elastomeric respirators, also called reusable air-purifying respirators, seal to the face with elastomeric material, which may be a natural or synthetic rubber. They are generally reusable. Full-face versions of elastomeric respirators seal better and protect the eyes.

FFP standards refer to the filtering half mask classification by EN 149, a European standard of testing and marking requirements for filtering half masks. FFP standard masks cover the nose, mouth and chin and may have inhalation and/or exhalation valves.

<span class="mw-page-title-main">Glossary of breathing apparatus terminology</span> Definitions of technical terms used in connection with breathing apparatus

A breathing apparatus or breathing set is equipment which allows a person to breathe in a hostile environment where breathing would otherwise be impossible, difficult, harmful, or hazardous, or assists a person to breathe. A respirator, medical ventilator, or resuscitator may also be considered to be breathing apparatus. Equipment that supplies or recycles breathing gas other than ambient air in a space used by several people is usually referred to as being part of a life-support system, and a life-support system for one person may include breathing apparatus, when the breathing gas is specifically supplied to the user rather than to the enclosure in which the user is the occupant.

References

  1. Ziqing, Zhuang; Christopher C. Coffey; Paul A. Jensen; Donald L. Campbell; Robert B. Lawrence; Warren R. Myers (2003). "Correlation Between Quantitative Fit Factors and Workplace Protection Factors Measured in Actual Workplace Environments at a Steel Foundry". American Industrial Hygiene Association Journal. 64 (6): 730–738. doi:10.1080/15428110308984867. ISSN   1542-8117. PMID   14674806.
  2. "To Beard or not to Beard? That's a good Question! | | Blogs | CDC". 2 November 2017. Retrieved 2020-02-27.
  3. Кириллов, Владимир; Филин АС; Чиркин АВ (2014). "Обзор результатов производственных испытаний средств индивидуальной защиты органов дыхания (СИЗОД)". Toksikologicheskiy Vestnik (in Russian). 6 (129): 44–49. doi:10.17686/sced_rusnauka_2014-1034. ISSN   0869-7922. Translation in English (in Wikisource): The Overview of Industrial Testing Outcome of Respiratory Organs Personal Protection Equipment
  4. Lenhart, Steven; Donald L. Campbell (1984). "Assigned protection factors for two respirator types based upon workplace performance testing". The Annals of Occupational Hygiene. 28 (2): 173–182. doi:10.1093/annhyg/28.2.173. ISSN   1475-3162. PMID   6476685.
  5. Фигуровский, Николай (1942). Очерк развития русского противогаза во время империалистической войны 1914—1918 гг (in Russian). Moscow, Leningrad: Издательство Академии наук СССР. p. 97.
  6. Болдырев, Василий (1917). Краткое практическое наставление к окуриванию войск (in Russian) (2 ed.). Moscow: Учеб.-фронтовый подотд. при Отд. противогазов В.З. и Г.С. p. 34.
  7. Чукаев К.И. (1917). Ядовитые газы (Наставление по противогазовому делу для инструкторов противогазовых команд, унтер-офицеров, а также для всех грамотных воинск. чинов) (in Russian). Kazan: типо-лит. Окр. штаба. p. 48.
  8. Митницкий, Михаил; Свикке Я.; Низкер С. (1937). В противогазах на производстве (in Russian). Moscow: ЦК Союза Осоавиахим СССР. p. 64.
  9. П. Кириллов, ed. (1935). Противогазные тренировки и камерные упражнения в атмосфере ОВ (in Russian). Moscow: Издание Центрального Совета ОСОАВИАХИМ СССР. p. 35.
  10. Достаточно ли ловок? // Новый горняк : Журнал. — Харьков, 1931. — В. 16
  11. Ковалев Н. (1944). Общие правила № 106 по уходу, хранению и работы в изолирующих, фильтрующих и шланговых промышленных противогазах, уход и работа на кислородном насосе (in Russian). Лысьва: Камский целлюлоз.-бум. комбинат. p. 106.
  12. Вассерман М. (1931). Дыхательные приборы в промышленности и в пожарном деле (in Russian). Moscow: Издательство Народного Комиссариата Внутренних Дел РСФСР. pp. 42, 207, 211, 221.
  13. Тарасов, Владимир; Кошелев, Владимир (2007). Просто о непростом в применении средств защиты органов дыхания (in Russian). Perm: Стиль-МГ. p. 279. ISBN   978-5-8131-0081-9.
  14. Чугасов АА (1966). "5 Проверка подбора лицевой части и исправности противогаза". Наставление по пользованию индивидуальными средствами защиты (in Russian). Moscow: Военное издательство Министерства обороны СССР. pp. 65–70.
  15. 1 2 3 US OSHA Standard 29 Code of Federal Register 1910.134 "Respiratory protection". Appendix A "Fit Testing Procedures"
  16. British Standard BS 4275-1997 "Guide to implementing an effective respiratory protective device programme"
  17. 1 2 DIN EN 529-2006. Respiratory protective devices - Recommendations for selection, use, care and maintenance - Guidance document; German version EN 529:2005
  18. 1 2 Bollinger, Nancy; Schutz, Robert; et al. (1987). A Guide to Industrial Respiratory Protection. NIOSH-Issued Publications, DHHS (NIOSH) Publication No. 87-116. Cincinnati, OH: National Institute for Occupational Safety and Health. doi:10.26616/NIOSHPUB87116.
  19. 1 2 Bollinger, Nancy; et al. (October 2004). NIOSH Respirator Selection Logic. NIOSH-Issued Publications, DHHS (NIOSH) Publication No. 2005-100. Cincinnati, OH: National Institute for Occupational Safety and Health. doi:10.26616/NIOSHPUB2005100.
  20. Lam, S.C.; Lee, J.K.L.; Yau, S.Y.; Charm, C.Y.C. (March 2011). "Sensitivity and specificity of the user-seal-check in determining the fit of N95 respirators". Journal of Hospital Infection. 77 (3): 252–256. doi:10.1016/j.jhin.2010.09.034. PMC   7114945 . PMID   21236516.
  21. Lam, Simon Ching; Lee, Joseph Kok Long; Lee, Linda Yin King; Wong, Ka Fai; Lee, Cathy Nga Yan (2 January 2015). "Respiratory Protection by Respirators: The Predictive Value of User Seal Check for the Fit Determination in Healthcare Settings". Infection Control & Hospital Epidemiology. 32 (4): 402–403. doi:10.1086/659151. PMID   21460496.
  22. Lam, Simon C.; Lui, Andrew K.F.; Lee, Linda Y.K.; Lee, Joseph K.L.; Wong, K.F.; Lee, Cathy N.Y. (May 2016). "Evaluation of the user seal check on gross leakage detection of 3 different designs of N95 filtering facepiece respirators". American Journal of Infection Control. 44 (5): 579–586. doi:10.1016/j.ajic.2015.12.013. PMC   7115279 . PMID   26831273.
  23. Suen, Lorna K.P.; Yang, Lin; Boss, Suki S.K.; Fung, Keith H.K.; Boost, Maureen V.; Wu, Cynthia S.T.; Au-Yeung, Cypher H.; O'Donoghue, Margaret (September 2017). "Reliability of N95 respirators for respiratory protection before, during, and after nursing procedures". American Journal of Infection Control. 45 (9): 974–978. doi:10.1016/j.ajic.2017.03.028. PMID   28526306.
  24. HSE 282/28 "FIT TESTING OF RESPIRATORY PROTECTIVE EQUIPMENT FACEPIECES"
  25. 1 2 U.S. Department of Labor, Bureau of Labor Statistics (2003). Respirator Usage in Private Sector Firms (PDF). Morgantown, WV: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. pp. 138–142.
  26. Crutchfield, Clifton; Richard W. Murphy; Mark D. Van Ert (1991). "A comparison of controlled negative pressure and aerosol quantitative respirator fit test systems by using fixed leaks". American Industrial Hygiene Association Journal. 52 (6): 249–251. doi:10.1080/15298669191364677. ISSN   1542-8117. PMID   1858667.
  27. Charles Jeffress (1998). OSHA Instruction CPL 02-00-120 "Inspection procedures for the Respiratory Protection Standard" 09/25/1998 - VII. Inspection Guidelines for the Standard on Respiratory Protection - G. Fit Testing
  28. 1 2 3 4 "Respirator Fit Testing" (PDF).
  29. "Despite benefits in testing and observation, there are many risks to smoke tubes".
  30. "Acceptability of New Technology Respirator Fit Testing Devices" (PDF).