Reverse proxy

Last updated
Example scenario: A client on the Internet (cloud on the left) makes a request to a reverse proxy server (red oval in the middle). The proxy inspects the request, determines that it is valid and that it does not have the requested resource in its own cache. It then forwards the request to some internal web server (oval on the right). The internal server delivers the requested resource back to the proxy, which in turn delivers it to the client. The client on the Internet is unaware of the internal network, and cannot tell whether it is communicating with a proxy or directly with a web server. Reverse proxy h2g2bob.svg
Example scenario: A client on the Internet (cloud on the left) makes a request to a reverse proxy server (red oval in the middle). The proxy inspects the request, determines that it is valid and that it does not have the requested resource in its own cache. It then forwards the request to some internal web server (oval on the right). The internal server delivers the requested resource back to the proxy, which in turn delivers it to the client. The client on the Internet is unaware of the internal network, and cannot tell whether it is communicating with a proxy or directly with a web server.

In computer networks, a reverse proxy or surrogate server is a proxy server that appears to any client to be an ordinary web server, but in reality merely acts as an intermediary that forwards the client's requests to one or more ordinary web servers. [1] [2] Reverse proxies help increase scalability, performance, resilience, and security, but they also carry a number of risks.

Contents

Companies that run web servers often set up reverse proxies to facilitate the communication between an Internet user's browser and the web servers. An important advantage of doing so is that the web servers can be hidden behind a firewall on a company-internal network, and only the reverse proxy needs to be directly exposed to the Internet. Reverse proxy servers are implemented in popular open-source web servers, such as Apache, Nginx, and Caddy. Dedicated reverse proxy servers, such as the open source software HAProxy and Squid, are used by some of the biggest websites on the Internet.

A reverse proxy can track all IP addresses making requests through it and it can also read and modify any non-encrypted traffic and risks logging passwords or injecting malware if compromised by a malicious party.

Reverse proxies differ from forward proxies, which are used when the client is restricted to a private, internal network and asks a forward proxy to retrieve resources from the public Internet.

Uses

Large websites and content delivery networks use reverse proxies, together with other techniques, to balance the load between internal servers. Reverse proxies can keep a cache of static content, which further reduces the load on these internal servers and the internal network. It is also common for reverse proxies to add features such as compression or TLS encryption to the communication channel between the client and the reverse proxy. [3]

Reverse proxies can inspect HTTP headers, which, for example, allows them to present a single IP address to the Internet while relaying requests to different internal servers based on the URL of the HTTP request.

Reverse proxies can hide the existence and characteristics of origin servers. This can make it more difficult to determine the actual location of the origin server / website and, for instance, more challenging to initiate legal action such as takedowns or block access to the website, as the IP address of the website may not be immediately apparent. Additionally, the reverse proxy may be located in a different jurisdiction with different legal requirements, further complicating the takedown process.

Application firewall features can protect against common web-based attacks, like a denial-of-service attack (DoS) or distributed denial-of-service attacks (DDoS). Without a reverse proxy, removing malware or initiating takedowns (while simultaneously dealing with the attack) on one's own site, for example, can be difficult.

In the case of secure websites, a web server may not perform TLS encryption itself, but instead offload the task to a reverse proxy that may be equipped with TLS acceleration hardware. (See TLS termination proxy.)

A reverse proxy can distribute the load from incoming requests to several servers, with each server supporting its own application area. In the case of reverse proxying web servers, the reverse proxy may have to rewrite the URL in each incoming request in order to match the relevant internal location of the requested resource.

A reverse proxy can reduce load on its origin servers by caching static content and dynamic content, known as web acceleration. Proxy caches of this sort can often satisfy a considerable number of website requests, greatly reducing the load on the origin server(s).

A reverse proxy can optimize content by compressing it in order to speed up loading times.

In a technique named "spoon-feeding", [4] a dynamically generated page can be produced all at once and served to the reverse proxy, which can then return it to the client a little bit at a time. The program that generates the page need not remain open, thus releasing server resources during the possibly extended time the client requires to complete the transfer.

Reverse proxies can operate wherever multiple web-servers must be accessible via a single public IP address. The web servers listen on different ports in the same machine, with the same local IP address or, possibly, on different machines with different local IP addresses. The reverse proxy analyzes each incoming request and delivers it to the right server within the local area network.

Reverse proxies can perform A/B testing and multivariate testing without placing JavaScript tags or code into pages.

A reverse proxy can add access authentication to a web server that does not have any authentication. [5] [6]

Risks

When the transit traffic is encrypted and the reverse proxy needs to filter/cache/compress or otherwise modify or improve the traffic, the proxy first must decrypt and re-encrypt communications. This requires the proxy to possess the TLS certificate and its corresponding private key, extending the number of systems that can have access to non-encrypted data and making it a more valuable target for attackers.

The vast majority of external data breaches happen either when hackers succeed in abusing an existing reverse proxy that was intentionally deployed by an organisation, or when hackers succeed in converting an existing Internet-facing server into a reverse proxy server. Compromised or converted systems allow external attackers to specify where they want their attacks proxied to, enabling their access to internal networks and systems.

Applications that were developed for the internal use of a company are not typically hardened to public standards and are not necessarily designed to withstand all hacking attempts. When an organisation allows external access to such internal applications via a reverse proxy, they might unintentionally increase their own attack surface and invite hackers.

If a reverse proxy is not configured to filter attacks or it does not receive daily updates to keep its attack signature database up to date, a zero-day vulnerability can pass through unfiltered, enabling attackers to gain control of the system(s) that are behind the reverse proxy server.

Using the reverse proxy of a third party (e.g., Cloudflare, Imperva) places the entire triad of confidentiality, integrity and availability in the hands of the third party who operates the proxy.

If a reverse proxy is fronting many different domains, its outage (e.g., by a misconfiguration or DDoS attack) could bring down all fronted domains. [7]

Reverse proxies can also become a single point of failure if there is no other way to access the back end server.

See also

Related Research Articles

The Domain Name System (DNS) is a hierarchical and distributed naming system for computers, services, and other resources in the Internet or other Internet Protocol (IP) networks. It associates various information with domain names assigned to each of the associated entities. Most prominently, it translates readily memorized domain names to the numerical IP addresses needed for locating and identifying computer services and devices with the underlying network protocols. The Domain Name System has been an essential component of the functionality of the Internet since 1985.

<span class="mw-page-title-main">HTTP</span> Application protocol for distributed, collaborative, hypermedia information systems

The Hypertext Transfer Protocol (HTTP) is an application layer protocol in the Internet protocol suite model for distributed, collaborative, hypermedia information systems. HTTP is the foundation of data communication for the World Wide Web, where hypertext documents include hyperlinks to other resources that the user can easily access, for example by a mouse click or by tapping the screen in a web browser.

<span class="mw-page-title-main">HTTPS</span> Extension of the HTTP communications protocol to support TLS encryption

Hypertext Transfer Protocol Secure (HTTPS) is an extension of the Hypertext Transfer Protocol (HTTP). It uses encryption for secure communication over a computer network, and is widely used on the Internet. In HTTPS, the communication protocol is encrypted using Transport Layer Security (TLS) or, formerly, Secure Sockets Layer (SSL). The protocol is therefore also referred to as HTTP over TLS, or HTTP over SSL.

<span class="mw-page-title-main">Email client</span> Computer program used to access and manage a users email

An email client, email reader or, more formally, message user agent (MUA) or mail user agent is a computer program used to access and manage a user's email.

<span class="mw-page-title-main">Load balancing (computing)</span> Set of techniques to improve the distribution of workloads across multiple computing resources

In computing, load balancing is the process of distributing a set of tasks over a set of resources, with the aim of making their overall processing more efficient. Load balancing can optimize the response time and avoid unevenly overloading some compute nodes while other compute nodes are left idle.

<span class="mw-page-title-main">Proxy server</span> Computer server that makes and receives requests on behalf of a user

In computer networking, a proxy server is a server application that acts as an intermediary between a client requesting a resource and the server providing that resource. It improves privacy, security, and performance in the process.

Transport Layer Security (TLS) is a cryptographic protocol designed to provide communications security over a computer network. The protocol is widely used in applications such as email, instant messaging, and voice over IP, but its use in securing HTTPS remains the most publicly visible.

<span class="mw-page-title-main">Squid (software)</span> Caching and forwarding HTTP web proxy

Squid is a caching and forwarding HTTP web proxy. It has a wide variety of uses, including speeding up a web server by caching repeated requests, caching World Wide Web (WWW), Domain Name System (DNS), and other network lookups for a group of people sharing network resources, and aiding security by filtering traffic. Although used for mainly HTTP and File Transfer Protocol (FTP), Squid includes limited support for several other protocols including Internet Gopher, Secure Sockets Layer (SSL), Transport Layer Security (TLS), and Hypertext Transfer Protocol Secure (HTTPS). Squid does not support the SOCKS protocol, unlike Privoxy, with which Squid can be used in order to provide SOCKS support.

SOCKS is an Internet protocol that exchanges network packets between a client and server through a proxy server. SOCKS5 optionally provides authentication so only authorized users may access a server. Practically, a SOCKS server proxies TCP connections to an arbitrary IP address, and provides a means for UDP packets to be forwarded. A SOCKS server accepts incoming client connection on TCP port 1080, as defined in RFC 1928.

In computer networks, a tunneling protocol is a communication protocol which allows for the movement of data from one network to another. It can, for example, allow private network communications to be sent across a public network, or for one network protocol to be carried over an incompatible network, through a process called encapsulation.

<span class="mw-page-title-main">Microsoft Forefront Threat Management Gateway</span>

Microsoft Forefront Threat Management Gateway, formerly known as Microsoft Internet Security and Acceleration Server, is a discontinued network router, firewall, antivirus program, VPN server and web cache from Microsoft Corporation. It ran on Windows Server and works by inspecting all network traffic that passes through it.

Round-robin DNS is a technique of load distribution, load balancing, or fault-tolerance provisioning multiple, redundant Internet Protocol service hosts, e.g., Web server, FTP servers, by managing the Domain Name System's (DNS) responses to address requests from client computers according to an appropriate statistical model.

<span class="mw-page-title-main">HTTP compression</span> Capability that can be built into web servers and web clients

HTTP compression is a capability that can be built into web servers and web clients to improve transfer speed and bandwidth utilization.

<span class="mw-page-title-main">X-Forwarded-For</span> HTTP header field

The X-Forwarded-For (XFF) HTTP header field is a common method for identifying the originating IP address of a client connecting to a web server through an HTTP proxy or load balancer.

Server Name Indication (SNI) is an extension to the Transport Layer Security (TLS) computer networking protocol by which a client indicates which hostname it is attempting to connect to at the start of the handshaking process. The extension allows a server to present one of multiple possible certificates on the same IP address and TCP port number and hence allows multiple secure (HTTPS) websites to be served by the same IP address without requiring all those sites to use the same certificate. It is the conceptual equivalent to HTTP/1.1 name-based virtual hosting, but for HTTPS. This also allows a proxy to forward client traffic to the right server during TLS/SSL handshake. The desired hostname is not encrypted in the original SNI extension, so an eavesdropper can see which site is being requested. The SNI extension was specified in 2003 in RFC 3546

A TLS termination proxy is a proxy server that acts as an intermediary point between client and server applications, and is used to terminate and/or establish TLS tunnels by decrypting and/or encrypting communications. This is different from TLS pass-through proxies that forward encrypted (D)TLS traffic between clients and servers without terminating the tunnel.

<span class="mw-page-title-main">Domain fronting</span> Technique for Internet censorship circumvention

Domain fronting is a technique for Internet censorship circumvention that uses different domain names in different communication layers of an HTTPS connection to discreetly connect to a different target domain than is discernable to third parties monitoring the requests and connections.

Cloudbleed was a Cloudflare buffer overflow disclosed by Project Zero on February 17, 2017. Cloudflare's code disclosed the contents of memory that contained the private information of other customers, such as HTTP cookies, authentication tokens, HTTP POST bodies, and other sensitive data. As a result, data from Cloudflare customers was leaked to all other Cloudflare customers that had access to server memory. This occurred, according to numbers provided by Cloudflare at the time, more than 18,000,000 times before the problem was corrected. Some of the leaked data was cached by search engines.

DNS over HTTPS (DoH) is a protocol for performing remote Domain Name System (DNS) resolution via the HTTPS protocol. A goal of the method is to increase user privacy and security by preventing eavesdropping and manipulation of DNS data by man-in-the-middle attacks by using the HTTPS protocol to encrypt the data between the DoH client and the DoH-based DNS resolver. By March 2018, Google and the Mozilla Foundation had started testing versions of DNS over HTTPS. In February 2020, Firefox switched to DNS over HTTPS by default for users in the United States. In May 2020, Chrome switched to DNS over HTTPS by default.

References

  1. "Forward and reverse proxies". The Apache Software Foundation. Archived from the original on 28 August 2018. Retrieved 26 August 2018.
  2. Reese, Will (September 2008). "Nginx: the high-performance web server and reverse proxy". Linux Journal (173).
  3. "Proxy servers and tunneling". MDN Web Docs. Archived from the original on 26 November 2020. Retrieved 6 December 2020.
  4. "squid-cache wiki entry on "SpoonFeeding"". Francesco Chemolli. Archived from the original on 25 January 2019. Retrieved 9 February 2011.
  5. "Possible to add basic HTTP access authentication via HAProxy?". serverfault.com. Archived from the original on 4 October 2018. Retrieved 27 April 2016.
  6. "forward_auth (Caddyfile directive) - Caddy Documentation". caddyserver.com. Retrieved 22 May 2022.
  7. "Cloudflare outage knocks out major sites and services, including Discord". finance.yahoo.com. Archived from the original on 22 June 2020. Retrieved 14 December 2020.