Rolleron

Last updated
Rollerons on the trailing edge of the fins of the AIM-9 Sidewinder missile Sidewinder-16.jpg
Rollerons on the trailing edge of the fins of the AIM-9 Sidewinder missile
Detail of a rolleron on a Sidewinder Sidewinder Fin.JPG
Detail of a rolleron on a Sidewinder
Rollerons on the fins of the K-13 missile R-3 rolleron.jpg
Rollerons on the fins of the K-13 missile

A rolleron is a type of aileron used for rockets and used to provide passive stabilization against rotation. While most commonly used to stabilize against roll, it can also be used for counteracting yaw and pitch as well. [1]

Contents

In the early 1950s, the first rollerons were produced. Its value for the dynamic stabilization of missiles led to it being promptly studied by the National Advisory Committee for Aeronautics (NACA). It proved to be a more compact, simpler, and reliable solution to controlling roll than preceding methods, such as the combination of servomechanisms and ailerons. Rolleron devices have been widely used on maneuverable close-range air-to-air missiles, such as the prolific AIM-9 Sidewinder. Rocket vehicles have also become another common application.

History

During the early 1950s, the first examples of the rolleron, sometimes initially referred to as a roll damper, emerged. Due to its potential value as a missile stabilization device it was quickly subject to in-depth evaluations by the National Advisory Committee for Aeronautics (NACA), and other organizations. [2] The early missiles in use by the mid-1950s were typified by their limited damping of aerodynamic roll as a consequence of their low-aspect ratio lifting surfaces. The historic solution to this issue was to install a servomechanism to sense the roll rate and make adjustments to a conventional aileron as to counteract as required; this approach added complexity and weight, and took up limited space. Thus, less impinging methods were urgently sought, with a preference for those that required no internal component whatsoever. [3]

By November 1956, NACA had determined the rolleron to have a reliable design approach for missile configurations. [3] At the behest of the US military, further tests were conducted to validate its performance on production missiles. [4] More generally, further innovations and patents associated with rollerons have been made over the following decades. [5] [6] Into the 1990s, the rolleron, along with potential applications for it, has continued to be examined by various organizations and nations. [1]

Function

The rolleron is a relatively simple and cost-effective stabilizing device. [7] The core element of a rolleron is a metal flywheel that is typically positioned at the trailing end of a fin. The wheel has notches cut into its circumference; these notches intentionally protrude as to maximize their interaction with the airflow. As such, while the missile is in motion through the air, the resulting air current generated causes the rolleron to rotate. [8] Rollerons are also used on 9M31 and 9M37 surface to air missiles of Strela-1 and Strela-10 air defense systems, with former using wires wound on the flywheel discs to spin them on launch while the latter uses small gas generator to spin the discs shortly before launch. [9] While spinning, the flywheel resists any lateral forces acting on it, in a manner similar to a gyroscope. The benefit of this gyroscopic motion is that it counteracts the missile's undesirable tendency to rotate about its central axis, dynamically stabilizing its flight. [7] In addition to stabilizing against roll, a similar effect can also be provided for yaw and pitch as well. [1]

It has been assessed to be considerably valuable for missiles requiring a high level of maneuverability, as used in shorter-range dogfights between fighter aircraft. [1] An early adopter of the rolleron was the AIM-9 Sidewinder, a prominent air-to-air missile. Such devices are present on all four of its rear wings. By eliminating roll tendencies, the rolleron makes it considerably easier for a missile carry out its core functions, such as target tracking. [7] [10] Furthermore, the rolleron has also become a typical feature on rocket vehicles. [11] [12]

Related Research Articles

<span class="mw-page-title-main">Aileron</span> Aircraft control surface used to induce roll

An aileron is a hinged flight control surface usually forming part of the trailing edge of each wing of a fixed-wing aircraft. Ailerons are used in pairs to control the aircraft in roll, which normally results in a change in flight path due to the tilting of the lift vector. Movement around this axis is called 'rolling' or 'banking'.

<span class="mw-page-title-main">National Advisory Committee for Aeronautics</span> U.S. federal agency; predecessor to NASA

The National Advisory Committee for Aeronautics (NACA) was a United States federal agency founded on March 3, 1915, to undertake, promote, and institutionalize aeronautical research. On October 1, 1958, the agency was dissolved and its assets and personnel were transferred to the newly created National Aeronautics and Space Administration (NASA). NACA is an initialism, i.e., pronounced as individual letters, rather than as a whole word.

<span class="mw-page-title-main">Autopilot</span> System to maintain vehicle trajectory in lieu of direct operator command

An autopilot is a system used to control the path of an aircraft, marine craft or spacecraft without requiring constant manual control by a human operator. Autopilots do not replace human operators. Instead, the autopilot assists the operator's control of the vehicle, allowing the operator to focus on broader aspects of operations.

<span class="mw-page-title-main">Elevon</span>

Elevons or tailerons are aircraft control surfaces that combine the functions of the elevator and the aileron, hence the name. They are frequently used on tailless aircraft such as flying wings. An elevon that is not part of the main wing, but instead is a separate tail surface, is a stabilator.

<span class="mw-page-title-main">Northrop YF-23</span> Prototype fighter aircraft for the US Air Force Advanced Tactical Fighter program

The Northrop/McDonnell Douglas YF-23 is an American single-seat, twin-engine, supersonic stealth fighter aircraft technology demonstrator designed for the United States Air Force (USAF). The design was a finalist in the USAF's Advanced Tactical Fighter (ATF) competition, battling the Lockheed YF-22 for a production contract. Two YF-23 prototypes were built.

<span class="mw-page-title-main">Northrop X-4 Bantam</span> American experimental jet aircraft

The Northrop X-4 Bantam was a prototype small twinjet aircraft manufactured by Northrop Corporation in 1948. It had no horizontal tail surfaces, depending instead on combined elevator and aileron control surfaces for control in pitch and roll attitudes, almost exactly in the manner of the similar-format, rocket-powered Messerschmitt Me 163 of Nazi Germany's Luftwaffe. Some aerodynamicists had proposed that eliminating the horizontal tail would also do away with stability problems at fast speeds resulting from the interaction of supersonic shock waves from the wings and the horizontal stabilizers. The idea had merit, but the flight control systems of that time prevented the X-4 from achieving any success.

<span class="mw-page-title-main">Thrust vectoring</span> Facet of ballistics and aeronautics

Thrust vectoring, also known as thrust vector control (TVC), is the ability of an aircraft, rocket or other vehicle to manipulate the direction of the thrust from its engine(s) or motor(s) to control the attitude or angular velocity of the vehicle.

<span class="mw-page-title-main">9K31 Strela-1</span> Vehicle-mounted SAM system

The 9K31 Strela-1 is a highly mobile, short-range, low altitude infra-red guided surface-to-air missile system. Originally developed by the Soviet Union under the GRAU designation 9K31, it is commonly known by its NATO reporting name, SA-9 "Gaskin". The system consists of a BRDM-2 amphibious vehicle, mounting two pairs of ready-to-fire 9M31 missiles.

<span class="mw-page-title-main">Aggregat</span> Nazi ballistic missile series

The Aggregat series was a set of ballistic missile designs developed in 1933–1945 by a research program of Nazi Germany's Army (Heer). Its greatest success was the A4, more commonly known as the V2.

<span class="mw-page-title-main">Stabilizer (ship)</span> Ship component meant to reduce a ships roll

Ship stabilizers are fins or rotors mounted beneath the waterline and emerging laterally from the hull to reduce a ship's roll due to wind or waves. Active fins are controlled by a gyroscopic control system. When the gyroscope senses the ship roll, it changes the fins' angle of attack so that the forward motion of the ship exerts force to counteract the roll. Fixed fins and bilge keels do not move; they reduce roll by hydrodynamic drag exerted when the ship rolls. Stabilizers are mostly used on ocean-going ships.

Adverse yaw is the natural and undesirable tendency for an aircraft to yaw in the opposite direction of a roll. It is caused by the difference in lift and drag of each wing. The effect can be greatly minimized with ailerons deliberately designed to create drag when deflected upward and/or mechanisms which automatically apply some amount of coordinated rudder. As the major causes of adverse yaw vary with lift, any fixed-ratio mechanism will fail to fully solve the problem across all flight conditions and thus any manually operated aircraft will require some amount of rudder input from the pilot in order to maintain coordinated flight.

<span class="mw-page-title-main">Barrel roll</span> Aerial maneuver

A barrel roll is an aerial maneuver in which an airplane makes a complete rotation on both its longitudinal and lateral axes, causing it to follow a helical path, approximately maintaining its original direction. It is sometimes described as a "combination of a loop and a roll". The g-force is kept positive on the object throughout the maneuver, commonly between 2 and 3g, and no less than 0.5g. The barrel roll is commonly confused with an aileron roll.

In aeronautics, inertia coupling, also referred to as inertial coupling and inertial roll coupling, is a potentially catastrophic phenomenon of high-speed flight which caused the loss of aircraft and pilots before the design features to counter it were understood. It occurs when the inertia of a heavy fuselage exceeds the ability of the aerodynamic forces and moments generated by the wing and empennage to stabilize the aircraft. The problem became apparent as jet fighter aircraft and research aircraft were developed with narrow wingspans, that had relatively low roll inertia, caused by a long slender high-density fuselage, compared to the pitch and yaw inertias.

<span class="mw-page-title-main">Anti-rolling gyro</span>

Ship stabilizing gyroscopes are a technology developed in the 19th century and early 20th century and used to stabilize roll motions in ocean-going ships. It lost favor in this application to hydrodynamic roll stabilizer fins because of reduced cost and weight. However, since the 1990s, there is renewed interest in the device for low-speed roll stabilization of vessels. Unlike traditional fins, the gyroscope does not rely on the forward speed of the ship to generate a roll stabilizing moment and therefore can stabilize motor yachts while at anchor. However, the latest generation of "zero speed" fins stabilizers can stabilize yachts while at anchor thanks to their eccentricity with respect of the shaft.

<span class="mw-page-title-main">MAA-1 Piranha</span> Short-range air-to-air missile

The MAA-1 Piranha is a short-range infrared homing missile and the first air-to-air missile developed by Brazil for its Air Force and Navy. It was designed to replace the AIM-9 Sidewinder missile in Brazilian service and has since been exported to Colombia, Indonesia and Pakistan.

<span class="mw-page-title-main">AIM-9 Sidewinder</span> Short-range air-to-air missile

The AIM-9 Sidewinder is a short-range air-to-air missile. Entering service with the United States Navy in 1956 and the Air Force in 1964, the AIM-9 is one of the oldest, cheapest, and most successful air-to-air missiles. Its latest variants remain standard equipment in most Western-aligned air forces. The Soviet K-13, a reverse-engineered copy of the AIM-9B, was also widely adopted.

<span class="mw-page-title-main">Creation of NASA</span>

The National Aeronautics and Space Administration (NASA) was created in 1958 from the National Advisory Committee for Aeronautics (NACA), and other related organizations, as the result of the Space Race between the United States and the Soviet Union in the 1950s.

As the coalition of Bay Areas counties predicted when it lobbied for the creation of Moffett Federal Airfield in the late 1920s, the base's research program and facilities catalyzed the development of numerous private technology and aerospace corporations, among them Lockheed Martin and the Hiller Aircraft Corporation.

<span class="mw-page-title-main">JB-3 Tiamat</span> Air-to-air missile

The JB-3 Tiamat was subsonic air-to-air missile program that began in January 1944 for the U.S. Army Air Force under project MX-570. Prime contractor was Hughes Aircraft Company Electronics Division which developed the Tiamat with the assistance of the National Advisory Committee for Aeronautics, (NACA).

<span class="mw-page-title-main">TDU-12/B Skydart</span> Target rocket

The TDU-12/B Skydart was an unguided target rocket built by Curtiss-Wright for use by the United States Air Force. It was used operationally from the late 1950s to the mid-1960s.

References

  1. 1 2 3 4 Der-Ren Taur; Jeng-Shing Chern (22 August 2012). "Rolleron dynamics in missile applications". 24th Atmospheric Flight Mechanics Conference 9 August 1999 - 11 August 1999. doi:10.2514/6.1999-4260.
  2. Nason, Martin L.; Brown, Clarence A. Jr.; Rock, Rupert S. (15 September 1955). "An Evaluation of a Rolleron-Roll-Rate-Stabilization System for a Canard Missile Configuration at Mach Numbers From 0.9 to 2.3". National Advisory Committee for Aeronautics (NACA).
  3. 1 2 Nason, Martin L. (29 November 1956). "A Semigraphical Method for the Determination of the Rolling Characteristics of Rolleron-Equipped Missiles". National Advisory Committee for Aeronautics (NACA).
  4. Clarence A. Brown Jr.; Martin L. Nason (29 April 1954). "Flight Investigation to Evaluate the Roll-Rate Stabilization system of the Naval Ordnance test station Sidewinder Missile at Mach Numbers from 0.9 20 2.3". National Advisory Committee for Aeronautics (NACA).
  5. Harry B Porter; Robert A Weinhardt (1970). "US3640484A: Release mechanism".
  6. Greene, Ronald W. (July 1980). "Aeroballistic Analysis of ERB/TIGER II: Aerodynamic Test Unit ATU-2 (SLA R7150J2)". osti.gov. doi:10.2172/5233735. S2CID   107835834.{{cite journal}}: Cite journal requires |journal= (help)
  7. 1 2 3 Harris, Tom (3 October 2002). "Rollerons explained". howstuffworks.com. Retrieved 23 May 2022.
  8. Henry Spencer; Steven Kasow. "Rolleron explained". newsgroup sci.space.tech. Retrieved 23 May 2022.
  9. History of the Electro-Optical Guided Missiles (PDF). Hpasp. 2016. p. 17.
  10. "Sidewinder Missile". Smithsonian . Retrieved 23 May 2022.
  11. von Bengtson, Kristian (25 October 2011). "Getting Airborne". wired.com.
  12. Munz, Jamie (2013). "Mechanical Systems Design of a Hovering Rocket Flight Vehicle". espace.library.uq.edu.au.