Sastrugi

Last updated
Wind sculpted snow near South Pole Station, forming sastrugi features. Anta0183 (19778502135).jpg
Wind sculpted snow near South Pole Station, forming sastrugi features.

Sastrugi, or zastrugi, are features formed by erosion of snow by wind. They are found in polar regions, and in snowy, wind-swept areas of temperate regions, such as frozen lakes or mountain ridges. [1] Sastrugi are distinguished by upwind-facing points, resembling anvils, which move downwind as the surface erodes. [2] These points usually lie along ridges parallel to the prevailing wind; [3] they are steep on the windward side and sloping to the leeward side. [4] Smaller irregularities of this type are known as ripples (small, ~10 mm high) or wind ridges.

Contents

Large sastrugi are troublesome to skiers and snowboarders. Traveling on the irregular surface of sastrugi can be very tiring, and can risk breaking equipment—ripples and waves are often undercut and the surface is hard and unforgiving, with constant minor topographic changes between ridge and trough.

Etymology

The words sastrugi and zastrugi are Russian-language plurals; the singular is zastruga. The form sastruga started as the German-language transliteration of the Russian word заструга (plural: заструги). [4]

A Latin-type analogical singular sastrugus is used in various writings on exploration of the South Pole, including Robert Falcon Scott's expedition's diaries and Ernest Shackleton's The Heart of the Antarctic .

Formation mechanism

Large sastrugi seen in radar image around the south edge (left side) of Lake Vostok in Antarctica (RADARSAT, NASA). White and black colors on sastrugi are not lights and shadows, they demonstrate difference in radioreflectivity of snow deposits on the windward and leeward sides of a sastruga. Lake Vostok Sat Photo color.jpg
Large sastrugi seen in radar image around the south edge (left side) of Lake Vostok in Antarctica (RADARSAT, NASA). White and black colors on sastrugi are not lights and shadows, they demonstrate difference in radioreflectivity of snow deposits on the windward and leeward sides of a sastruga.

Under the action of steady wind, free snow particles accumulate and drift like the sand grains in barchan dunes, and the resulting drifting snow shapes are also popularly referred to as barchans. Inuit of Canada call them kalutoqaniq. When winds slacken, the drifted formations consolidate via sublimation and recrystallization. Subsequent winds erode kalutoqaniq into the sculptured forms of sastrugi. Inuit call large sculpturings kaioqlaq and small ripples tumarinyiq. Further erosion may turn kaioqlaq back into drifting kalutoqaniq. An intermediate stage of erosion is mapsuk, an overhanging shape. On the windward side of a ridge, the base erodes faster than the top, producing a shape like an anvil tip pointing upwind. [5]

On sea ice

Sastrugi are more likely to form on first-year sea ice than on multiyear ice. First-year ice is smoother than multiyear ice, which allows the wind to pass uniformly over the surface without topographic obstructions. Except during the melt season, snow is dry and light in climates cold enough for sea ice, allowing the snow to be easily blown and create sastrugi parallel [3] [6] to the wind direction. The locations of sastrugi are fixed by March in the northern hemisphere and may be linked to the formation of melt ponds. Melt ponds are more likely to form in the depressions between sastrugi on first-year ice. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Antarctic Circumpolar Current</span> Ocean current that flows clockwise from west to east around Antarctica

The Antarctic Circumpolar Current (ACC) is an ocean current that flows clockwise from west to east around Antarctica. An alternative name for the ACC is the West Wind Drift. The ACC is the dominant circulation feature of the Southern Ocean and has a mean transport estimated at 100–150 Sverdrups, or possibly even higher, making it the largest ocean current. The current is circumpolar due to the lack of any landmass connecting with Antarctica and this keeps warm ocean waters away from Antarctica, enabling that continent to maintain its huge ice sheet.

<span class="mw-page-title-main">Dune</span> Hill of loose sand built by aeolian processes or the flow of water

A dune is a landform composed of wind- or water-driven sand. It typically takes the form of a mound, ridge, or hill. An area with dunes is called a dune system or a dune complex. A large dune complex is called a dune field, while broad, flat regions covered with wind-swept sand or dunes with little or no vegetation are called ergs or sand seas. Dunes occur in different shapes and sizes, but most kinds of dunes are longer on the stoss (upflow) side, where the sand is pushed up the dune, and have a shorter slip face in the lee side. The valley or trough between dunes is called a dune slack.

<span class="mw-page-title-main">Glacier</span> Persistent body of ice that is moving under its own weight

A glacier is a persistent body of dense ice that is constantly moving under its own weight. A glacier forms where the accumulation of snow exceeds its ablation over many years, often centuries. It acquires distinguishing features, such as crevasses and seracs, as it slowly flows and deforms under stresses induced by its weight. As it moves, it abrades rock and debris from its substrate to create landforms such as cirques, moraines, or fjords. Although a glacier may flow into a body of water, it forms only on land and is distinct from the much thinner sea ice and lake ice that form on the surface of bodies of water.

<span class="mw-page-title-main">Sea ice</span> Ice formed from frozen seawater

Sea ice arises as seawater freezes. Because ice is less dense than water, it floats on the ocean's surface. Sea ice covers about 7% of the Earth's surface and about 12% of the world's oceans. Much of the world's sea ice is enclosed within the polar ice packs in the Earth's polar regions: the Arctic ice pack of the Arctic Ocean and the Antarctic ice pack of the Southern Ocean. Polar packs undergo a significant yearly cycling in surface extent, a natural process upon which depends the Arctic ecology, including the ocean's ecosystems. Due to the action of winds, currents and temperature fluctuations, sea ice is very dynamic, leading to a wide variety of ice types and features. Sea ice may be contrasted with icebergs, which are chunks of ice shelves or glaciers that calve into the ocean. Depending on location, sea ice expanses may also incorporate icebergs.

<span class="mw-page-title-main">Barchan</span> Crescent-shaped dune

A barchan or barkhan dune is a crescent-shaped dune. The term was introduced in 1881 by Russian naturalist Alexander von Middendorf, based on their occurrence in Turkestan and other inland desert regions. Barchans face the wind, appearing convex and are produced by wind action predominantly from one direction. They are a very common landform in sandy deserts all over the world and are arc-shaped, markedly asymmetrical in cross section, with a gentle slope facing toward the wind sand ridge, comprising well-sorted sand.

<span class="mw-page-title-main">Aeolian processes</span> Processes due to wind activity

Aeolian processes, also spelled eolian, pertain to wind activity in the study of geology and weather and specifically to the wind's ability to shape the surface of the Earth. Winds may erode, transport, and deposit materials and are effective agents in regions with sparse vegetation, a lack of soil moisture and a large supply of unconsolidated sediments. Although water is a much more powerful eroding force than wind, aeolian processes are important in arid environments such as deserts.

<span class="mw-page-title-main">Windbreak</span> Rows of trees or shrubs planted to provide shelter from the wind

A windbreak (shelterbelt) is a planting usually made up of one or more rows of trees or shrubs planted in such a manner as to provide shelter from the wind and to protect soil from erosion. They are commonly planted in hedgerows around the edges of fields on farms. If designed properly, windbreaks around a home can reduce the cost of heating and cooling and save energy. Windbreaks are also planted to help keep snow from drifting onto roadways or yards. Farmers sometimes use windbreaks to keep snow drifts on farm land that will provide water when the snow melts in the spring. Other benefits include contributing to a microclimate around crops, providing habitat for wildlife, and, in some regions, providing wood if the trees are harvested.

<span class="mw-page-title-main">Dirt cone</span> Depositional glacial feature of ice or snow with an insulating layer of dirt

A dirt cone is a type of depositional glacial feature. Dirt cones are not actually made entirely of dirt. They have a core of ice, snow, or firn that gets covered with material and insulated. The material, if it is thick enough, will protect the underlying core from ablation. The thickness of material needed to insulate the core is called the “critical thickness.” If the material is less thick than the critical thickness, it will actually speed up erosion of the core through ablation. This is called “indirect ablation.” The cone would then begin melting and shrinking away.

<span class="mw-page-title-main">Terra Cimmeria</span> Terra on Mars

Terra Cimmeria is a large Martian region, centered at 34.7°S 145°E and covering 5,400 km (3,400 mi) at its broadest extent. It covers latitudes 15 N to 75 S and longitudes 170 to 260 W. It lies in the Eridania quadrangle. Terra Cimmeria is one part of the heavily cratered, southern highland region of the planet. The Spirit rover landed near the area.

<span class="mw-page-title-main">Terra Sabaea</span> Terra on Mars

Terra Sabaea is a large area on Mars. Its coordinates are 2°N42°E and it covers 4,700 kilometres (2,900 mi) at its broadest extent. It was named in 1979 after a classic albedo feature on the planet. Terra Sabaea is fairly large and parts of it are found in five quadrangles: Arabia quadrangle, Syrtis Major quadrangle, Iapygia quadrangle, Ismenius Lacus quadrangle, and Sinus Sabaeus quadrangle.

<span class="mw-page-title-main">Glacial history of Minnesota</span>

The glacial history of Minnesota is most defined since the onset of the last glacial period, which ended some 10,000 years ago. Within the last million years, most of the Midwestern United States and much of Canada were covered at one time or another with an ice sheet. This continental glacier had a profound effect on the surface features of the area over which it moved. Vast quantities of rock and soil were scraped from the glacial centers to its margins by slowly moving ice and redeposited as drift or till. Much of this drift was dumped into old preglacial river valleys, while some of it was heaped into belts of hills at the margin of the glacier. The chief result of glaciation has been the modification of the preglacial topography by the deposition of drift over the countryside. However, continental glaciers possess great power of erosion and may actually modify the preglacial land surface by scouring and abrading rather than by the deposition of the drift.

<span class="mw-page-title-main">Olympia Undae</span> Martian dune field

Olympia Undae is a vast dune field in the north polar region of the planet Mars. It consists of a broad "sand sea" or erg that partly rings the north polar plateau from about 120° to 240°E longitude and 78° to 83°N latitude. Stretching about 1,100 km (680 mi) across and covering an area of 470,000 km2, Olympia Undae is the largest continuous dune field on Mars. It is similar in size to the Rub' Al Khali in the Arabian Peninsula, the largest active erg on Earth.

Ablation Valley, also known as Ablation Bay, is a mainly ice-free valley on the east coast of Alexander Island, 3 km (1.9 mi) long, which is entered immediately south of Ablation Point, opens on George VI Sound and lies immediately north of Ganymede Heights. It was first photographed from the air on 23 November 1935 by Lincoln Ellsworth and mapped from these photographs by W.L.G. Joerg. It was first visited and surveyed in 1936 by the British Graham Land Expedition (BGLE), and given the name "Ablation" by them because of the relatively small amounts of snow and ice found there. The site lies within Antarctic Specially Protected Area (ASPA) No.147.

Aeolian landforms are features produced by either the erosive or constructive action of the wind. These features may be built up from sand or snow, or eroded into rock, snow, or ice. Aeolian landforms are commonly observed in sandy deserts and on frozen lakes or sea ice and have been observed and studied across Earth and on other planets, including Mars and Pluto

<span class="mw-page-title-main">Paha (landform)</span> Type of loess hill

Paha are elongated landforms composed either of only loess or till capped by loess. In Iowa, paha are prominent hills that are oriented from northwest to southeast, formed during the period of mass erosion that developed the Iowan surface, and they are considered erosional remnants since they often preserve buried soils. Paha generally rise above the surrounding landscape more than 6.1 metres (20 ft). The word paha means hill in Dakota Sioux. Well known pahas include the hill on which the town of Mount Vernon, Iowa developed, Casey's Paha in Tama County, Iowa, and the Kirkwood Paha, home of Kirkwood Community College's campus. These features are found in other regions of the United States and in Europe, where they are known as greda.

<span class="mw-page-title-main">Iapygia quadrangle</span> Map of Mars

The Iapygia quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Iapygia quadrangle is also referred to as MC-21.

<span class="mw-page-title-main">Mare Tyrrhenum quadrangle</span> Part of the surface of Mars

The Mare Tyrrhenum quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. This quadrangle is also referred to as MC-22. It contains parts of the regions Tyrrhena Terra, Hesperia Planum, and Terra Cimmeria.

<span class="mw-page-title-main">Classifications of snow</span> Methods for describing snowfall events and the resulting snow crystals

Classifications of snow describe and categorize the attributes of snow-generating weather events, including the individual crystals both in the air and on the ground, and the deposited snow pack as it changes over time. Snow can be classified by describing the weather event that is producing it, the shape of its ice crystals or flakes, how it collects on the ground, and thereafter how it changes form and composition. Depending on the status of the snow in the air or on the ground, a different classification applies.

<span class="mw-page-title-main">Antarctic sea ice</span> Sea ice of the Southern Ocean

Antarctic sea ice is the sea ice of the Southern Ocean. It extends from the far north in the winter and retreats to almost the coastline every summer, getting closer and closer to the coastline every year due to sea ice melting. Sea ice is frozen seawater that is usually less than a few meters thick. This is the opposite of ice shelves, which are formed by glaciers, they float in the sea, and are up to a kilometre thick. There are two subdivisions of sea ice: fast ice, which are attached to land; and ice floes, which are not.

<span class="mw-page-title-main">Niveo-aeolian deposition</span> Deposition of sediments onto snow or ice

Niveo-aeolian or cryo-aeolian deposition is the process by which fine-grained sediments are transported by wind and deposited on or mixed with snow or ice. The wind sweeps the snow and sand grains into aeolian landforms such as ripples, and further sorts the snow and ice grains into distinct layers. When snow melts or sublimates, the sediments are redeposited onto the surface below., forming patterns known as denivation features.

References

  1. Kochanski, K.; Anderson, R.S.; Tucker, G. (Jun 2018). "Statistical classification of self-organized snow surfaces". Geophysical Research Letters. 45 (13): 6532–6541. Bibcode:2018GeoRL..45.6532K. doi: 10.1029/2018GL077616 . OSTI   1539740.
  2. Kochanski, K.; Anderson, R.S.; Tucker, G. (2019). "The evolution of snow bedforms in the Colorado Front Range". The Cryosphere. 13: 1267–1281. doi: 10.5194/tc-13-1267-2019 .
  3. 1 2 Leonard, K. C.; Tremblay, B. (Dec 2006). "Depositional origin of snow sastrugi". AGU Fall Meeting Abstracts. 2006: C21C–1170. Bibcode:2006AGUFM.C21C1170L. #C21C-1170.
  4. 1 2 C. Fitzhugh Talman: The singular of “sastrugi” , Monthly Weather Review 43, February 1915, p. 85–86
  5. Wonders, William C., Canada's changing North, Mcgill Queens Univ Press, 2003 ISBN   978-0773526402 p. 40
  6. Chan, John K.W. "Sastrugi". Hong Kong Observatory (HKO).
  7. Petrich, C.; Eicken, H.; Polashenski, C. M.; Sturm, M.; Harbeck, J. P.; Perovich, D. K.; Finnegan, D. C. (25 Sep 2012). "Snow dunes: A controlling factor of melt pond distribution on Arctic sea ice". J. Geophys. Res. 117 (C09029): C09029. Bibcode:2012JGRC..117.9029P. doi:10.1029/2012JC008192. hdl: 2060/20140011040 .