Self-consistency principle in high energy physics

Last updated

The self-consistency principle was established by Rolf Hagedorn in 1965 to explain the thermodynamics of fireballs in high energy physics collisions. A thermodynamical approach to the high energy collisions first proposed by E. Fermi. [1]

Contents

Partition function

The partition function of the fireballs can be written in two forms, one in terms of its density of states, , and the other in terms of its mass spectrum, .

The self-consistency principle says that both forms must be asymptotically equivalent for energies or masses sufficiently high (asymptotic limit). Also, the density of states and the mass spectrum must be asymptotically equivalent in the sense of the weak constraint proposed by Hagedorn [2] as

.

These two conditions are known as the self-consistency principle or bootstrap-idea. After a long mathematical analysis Hagedorn was able to prove that there is in fact and satisfying the above conditions, resulting in

and

with and related by

.

Then the asymptotic partition function is given by

where a singularity is clearly observed for . This singularity determines the limiting temperature in Hagedorn's theory, which is also known as Hagedorn temperature.

Hagedorn was able not only to give a simple explanation for the thermodynamical aspect of high energy particle production, but also worked out a formula for the hadronic mass spectrum and predicted the limiting temperature for hot hadronic systems.

After some time this limiting temperature was shown by N. Cabibbo and G. Parisi to be related to a phase transition, [3] which characterizes by the deconfinement of quarks at high energies. The mass spectrum was further analyzed by Steven Frautschi. [4]

Q-exponential function

The Hagedorn theory was able to describe correctly the experimental data from collision with center-of-mass energies up to approximately 10 GeV, but above this region it failed. In 2000 I. Bediaga, E. M. F. Curado and J. M. de Miranda [5] proposed a phenomenological generalization of Hagedorn's theory by replacing the exponential function that appears in the partition function by the q-exponential function from the Tsallis non-extensive statistics. With this modification the generalized theory was able again to describe the extended experimental data.

In 2012 A. Deppman proposed a non-extensive self-consistent thermodynamical theory [6] that includes the self-consistency principle and the non-extensive statistics. This theory gives as result the same formula proposed by Bediaga et al., which describes correctly the high energy data, but also new formulas for the mass spectrum and density of states of fireball. It also predicts a new limiting temperature and a limiting entropic index.

Related Research Articles

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold. It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is flat, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.

<span class="mw-page-title-main">Poincaré group</span> Group of flat spacetime symmetries

The Poincaré group, named after Henri Poincaré (1906), was first defined by Hermann Minkowski (1908) as the group of Minkowski spacetime isometries. It is a ten-dimensional non-abelian Lie group that is of importance as a model in our understanding of the most basic fundamentals of physics.

<span class="mw-page-title-main">Onsager reciprocal relations</span> Relations between flows and forces, or gradients, in thermodynamic systems

In thermodynamics, the Onsager reciprocal relations express the equality of certain ratios between flows and forces in thermodynamic systems out of equilibrium, but where a notion of local equilibrium exists.

<span class="mw-page-title-main">Fermi's interaction</span> Mechanism of beta decay proposed in 1933

In particle physics, Fermi's interaction is an explanation of the beta decay, proposed by Enrico Fermi in 1933. The theory posits four fermions directly interacting with one another. This interaction explains beta decay of a neutron by direct coupling of a neutron with an electron, a neutrino and a proton.

The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change. For a given set of reaction conditions, the equilibrium constant is independent of the initial analytical concentrations of the reactant and product species in the mixture. Thus, given the initial composition of a system, known equilibrium constant values can be used to determine the composition of the system at equilibrium. However, reaction parameters like temperature, solvent, and ionic strength may all influence the value of the equilibrium constant.

<span class="mw-page-title-main">Radiation zone</span> Radiative layer of stars

A radiation zone, or radiative region is a layer of a star's interior where energy is primarily transported toward the exterior by means of radiative diffusion and thermal conduction, rather than by convection. Energy travels through the radiation zone in the form of electromagnetic radiation as photons.

In chemical thermodynamics, the reaction quotient (Qr or just Q) is a dimensionless quantity that provides a measurement of the relative amounts of products and reactants present in a reaction mixture for a reaction with well-defined overall stoichiometry, at a particular point in time. Mathematically, it is defined as the ratio of the activities (or molar concentrations) of the product species over those of the reactant species involved in the chemical reaction, taking stoichiometric coefficients of the reaction into account as exponents of the concentrations. In equilibrium, the reaction quotient is constant over time and is equal to the equilibrium constant.

When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

<span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span> Ways of writing certain laws of physics

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

<span class="mw-page-title-main">Maxwell's equations in curved spacetime</span> Electromagnetism in general relativity

In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

In the theory of general relativity, a stress–energy–momentum pseudotensor, such as the Landau–Lifshitz pseudotensor, is an extension of the non-gravitational stress–energy tensor that incorporates the energy–momentum of gravity. It allows the energy–momentum of a system of gravitating matter to be defined. In particular it allows the total of matter plus the gravitating energy–momentum to form a conserved current within the framework of general relativity, so that the total energy–momentum crossing the hypersurface of any compact space–time hypervolume vanishes.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

In the Newman–Penrose (NP) formalism of general relativity, Weyl scalars refer to a set of five complex scalars which encode the ten independent components of the Weyl tensor of a four-dimensional spacetime.

In mathematical finance, the SABR model is a stochastic volatility model, which attempts to capture the volatility smile in derivatives markets. The name stands for "stochastic alpha, beta, rho", referring to the parameters of the model. The SABR model is widely used by practitioners in the financial industry, especially in the interest rate derivative markets. It was developed by Patrick S. Hagan, Deep Kumar, Andrew Lesniewski, and Diana Woodward.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

Diffusivity, mass diffusivity or diffusion coefficient is usually written as the proportionality constant between the molar flux due to molecular diffusion and the negative value of the gradient in the concentration of the species. More accurately, the diffusion coefficient times the local concentration is the proportionality constant between the negative value of the mole fraction gradient and the molar flux. This distinction is especially significant in gaseous systems with strong temperature gradients. Diffusivity derives its definition from Fick's law and plays a role in numerous other equations of physical chemistry.

<span class="mw-page-title-main">Dynamic fluid film equations</span>

Fluid films, such as soap films, are commonly encountered in everyday experience. A soap film can be formed by dipping a closed contour wire into a soapy solution as in the figure on the right. Alternatively, a catenoid can be formed by dipping two rings in the soapy solution and subsequently separating them while maintaining the coaxial configuration.

<span class="mw-page-title-main">Lovelock theory of gravity</span>

In theoretical physics, Lovelock's theory of gravity (often referred to as Lovelock gravity) is a generalization of Einstein's theory of general relativity introduced by David Lovelock in 1971. It is the most general metric theory of gravity yielding conserved second order equations of motion in an arbitrary number of spacetime dimensions D. In this sense, Lovelock's theory is the natural generalization of Einstein's General Relativity to higher dimensions. In three and four dimensions (D = 3, 4), Lovelock's theory coincides with Einstein's theory, but in higher dimensions the theories are different. In fact, for D > 4 Einstein gravity can be thought of as a particular case of Lovelock gravity since the Einstein–Hilbert action is one of several terms that constitute the Lovelock action.

In experimental physics, researchers have proposed non-extensive self-consistent thermodynamic theory to describe phenomena observed in the Large Hadron Collider (LHC). This theory investigates a fireball for high-energy particle collisions, while using Tsallis non-extensive thermodynamics. Fireballs lead to the bootstrap idea, or self-consistency principle, just as in the Boltzmann statistics used by Rolf Hagedorn. Assuming the distribution function gets variations, due to possible symmetrical change, Abdel Nasser Tawfik applied the non-extensive concepts of high-energy particle production.

References

  1. Fermi, E. (1950-07-01). "High Energy Nuclear Events". Progress of Theoretical Physics. Oxford University Press (OUP). 5 (4): 570–583. doi: 10.1143/ptp/5.4.570 . ISSN   0033-068X.
  2. R. Hagedorn, Suppl. Al Nuovo Cimento 3 (1965) 147.
  3. Cabibbo, N.; Parisi, G. (1975). "Exponential hadronic spectrum and quark liberation". Physics Letters B. Elsevier BV. 59 (1): 67–69. doi:10.1016/0370-2693(75)90158-6. ISSN   0370-2693.
  4. Frautschi, Steven (1971-06-01). "Statistical Bootstrap Model of Hadrons". Physical Review D. American Physical Society (APS). 3 (11): 2821–2834. doi:10.1103/physrevd.3.2821. ISSN   0556-2821.
  5. Bediaga, I.; Curado, E.M.F.; de Miranda, J.M. (2000). "A nonextensive thermodynamical equilibrium approach in e+e−→ hadrons". Physica A: Statistical Mechanics and Its Applications. 286 (1–2): 156–163. arXiv: hep-ph/9905255 . doi:10.1016/s0378-4371(00)00368-x. ISSN   0378-4371. S2CID   14207129.
  6. Deppman, A. (2012). "Self-consistency in non-extensive thermodynamics of highly excited hadronic states". Physica A: Statistical Mechanics and Its Applications. Elsevier BV. 391 (24): 6380–6385. arXiv: 1205.0455 . doi: 10.1016/j.physa.2012.07.071 . ISSN   0378-4371.