Sequentially compact space

Last updated

In mathematics, a topological space X is sequentially compact if every sequence of points in X has a convergent subsequence converging to a point in .

Contents

Every metric space is naturally a topological space, and for metric spaces, the notions of compactness and sequential compactness are equivalent (if one assumes countable choice). However, there exist sequentially compact topological spaces that are not compact, and compact topological spaces that are not sequentially compact.

Examples and properties

The space of all real numbers with the standard topology is not sequentially compact; the sequence given by for all natural numbers is a sequence that has no convergent subsequence.

If a space is a metric space, then it is sequentially compact if and only if it is compact. [1] The first uncountable ordinal with the order topology is an example of a sequentially compact topological space that is not compact. The product of copies of the closed unit interval is an example of a compact space that is not sequentially compact. [2]

A topological space is said to be limit point compact if every infinite subset of has a limit point in , and countably compact if every countable open cover has a finite subcover. In a metric space, the notions of sequential compactness, limit point compactness, countable compactness and compactness are all equivalent (if one assumes the axiom of choice).

In a sequential (Hausdorff) space sequential compactness is equivalent to countable compactness. [3]

There is also a notion of a one-point sequential compactification—the idea is that the non convergent sequences should all converge to the extra point. [4]

See also

Notes

  1. Willard, 17G, p. 125.
  2. Steen and Seebach, Example 105, pp. 125126.
  3. Engelking, General Topology, Theorem 3.10.31
    K.P. Hart, Jun-iti Nagata, J.E. Vaughan (editors), Encyclopedia of General Topology, Chapter d3 (by P. Simon)
  4. Brown, Ronald, "Sequentially proper maps and a sequential compactification", J. London Math Soc. (2) 7 (1973) 515-522.

Related Research Articles

<span class="mw-page-title-main">Compact space</span> Type of mathematical space

In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers is not compact either, because it excludes the two limiting values and . However, the extended real number linewould be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces.

In mathematics, more specifically in general topology and related branches, a net or Moore–Smith sequence is a function whose domain is a directed set. The codomain of this function is usually some topological space. Nets directly generalize the concept of a sequence in a metric space. Nets are primarily used in the fields of Analysis and Topology, where they are used to characterize many important topological properties that, sequences are unable to characterize. Nets are in one-to-one correspondence with filters.

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood.

The Baire category theorem (BCT) is an important result in general topology and functional analysis. The theorem has two forms, each of which gives sufficient conditions for a topological space to be a Baire space. It is used in the proof of results in many areas of analysis and geometry, including some of the fundamental theorems of functional analysis.

In mathematics, Tychonoff's theorem states that the product of any collection of compact topological spaces is compact with respect to the product topology. The theorem is named after Andrey Nikolayevich Tikhonov, who proved it first in 1930 for powers of the closed unit interval and in 1935 stated the full theorem along with the remark that its proof was the same as for the special case. The earliest known published proof is contained in a 1935 article by Tychonoff, "Über einen Funktionenraum".

<span class="mw-page-title-main">General topology</span> Branch of topology

In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology.

In mathematics, an order topology is a certain topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets.

<span class="mw-page-title-main">Hilbert cube</span> Type of topological space

In mathematics, the Hilbert cube, named after David Hilbert, is a topological space that provides an instructive example of some ideas in topology. Furthermore, many interesting topological spaces can be embedded in the Hilbert cube; that is, can be viewed as subspaces of the Hilbert cube.

In mathematics, a Lindelöf space is a topological space in which every open cover has a countable subcover. The Lindelöf property is a weakening of the more commonly used notion of compactness, which requires the existence of a finite subcover.

In mathematics, a topological space is said to be σ-compact if it is the union of countably many compact subspaces.

<i>Counterexamples in Topology</i> Book by Lynn Steen

Counterexamples in Topology is a book on mathematics by topologists Lynn Steen and J. Arthur Seebach, Jr.

In topology, the cartesian product of topological spaces can be given several different topologies. One of the more natural choices is the box topology, where a base is given by the Cartesian products of open sets in the component spaces. Another possibility is the product topology, where a base is given by the Cartesian products of open sets in the component spaces, only finitely many of which can be not equal to the entire component space.

In topology and related fields of mathematics, a sequential space is a topological space whose topology can be completely characterized by its convergent/divergent sequences. They can be thought of as spaces that satisfy a very weak axiom of countability, and all first-countable spaces are sequential.

In measure theory Prokhorov's theorem relates tightness of measures to relative compactness in the space of probability measures. It is credited to the Soviet mathematician Yuri Vasilyevich Prokhorov, who considered probability measures on complete separable metric spaces. The term "Prokhorov’s theorem" is also applied to later generalizations to either the direct or the inverse statements.

In mathematics a topological space is called countably compact if every countable open cover has a finite subcover.

In mathematics, a topological space is said to be limit point compact or weakly countably compact if every infinite subset of has a limit point in This property generalizes a property of compact spaces. In a metric space, limit point compactness, compactness, and sequential compactness are all equivalent. For general topological spaces, however, these three notions of compactness are not equivalent.

In the mathematical field of functional analysis, the Eberlein–Šmulian theorem is a result that relates three different kinds of weak compactness in a Banach space.

In topology and related areas of mathematics, a subset A of a topological space X is said to be dense in X if every point of X either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it. Formally, is dense in if the smallest closed subset of containing is itself.

References