Simultaneous hermaphroditism

Last updated

Simultaneous hermaphroditism is one of the two types of hermaphroditism, the other type being sequential hermaphroditism. In this form of hermaphroditism an individual has sex organs of both sexes and can produce both gamete types [1] even in the same breeding season. [2]

Contents

The distinction between simultaneous hermaphroditism and sequential hermaphroditism is not always clear. [3] But unlike sequential hermaphrodites, simultaneous hermaphrodites are both male and female at sexual maturity. Also sex determination does not apply to simultaneous hermaphrodites (except in species with mix mating systems). [4]

In simultaneous hermaphrodites, self-fertilization is possible in some species, where in others it is absent. [5]

Plants

Most plants are simultaneous hermaphrodites [6] with it occurring in 80% of angiosperms. [5]

Animals

Simultaneous hermaphroditism is one of the most common sexual systems in animals. [7] The majority of Cocculinoidea are simultaneous hermaphrodites [8] and it occurs in over 67% of coral species. [9]

The primary model explaining the evolution of simultaneous hermaphroditism from gonochorism (separate sexes) in animals is the low density model. [10] This model explains simultaneous hermaphroditism as a reproductive adaptation to limited mating opportunities. This is advantageous to simultaneous hermaphrodites that can self-fertilize, because they are able to reproduce even if they fail to find a sexual partner. The low density model is helpful for understanding the development of simultaneous hermaphroditism in many animal species. For example, in crustaceans simultaneous hermaphroditism can be found in groups that are sessile or live in environments with limited mating opportunities. [11]

Related Research Articles

<span class="mw-page-title-main">Sex</span> Trait that determines an individuals sexually reproductive function

Sex is the trait that determines whether a sexually reproducing organism produces male or female gametes. A male organism produces small mobile gametes, while a female organism produces larger, non-mobile gametes. An organism that produces both types of gamete is called a hermaphrodite. During sexual reproduction, a male and a female gamete fuse to form a zygote, which develops into an offspring that inherits traits from each parent.

<span class="mw-page-title-main">Sex organ</span> Body part involved in sexual reproduction

A sex organ, also known as a reproductive organ, is a part of an organism that is involved in sexual reproduction. Sex organs constitute the primary sex characteristics of an organism. Sex organs are responsible for producing and transporting gametes, as well as facilitating fertilization and supporting the development and birth of offspring. Sex organs are found in many species of animals and plants, with their features varying depending on the species.

<span class="mw-page-title-main">Sexual differentiation</span> Embryonic development of sex differences

Sexual differentiation is the process of development of the sex differences between males and females from an undifferentiated zygote. Sex determination is often distinct from sex differentiation; sex determination is the designation for the development stage towards either male or female, while sex differentiation is the pathway towards the development of the phenotype.

In biology, gonochorism is a sexual system where there are only two sexes and each individual organism is either male or female. The term gonochorism is usually applied in animal species, the vast majority of which are gonochoric.

<span class="mw-page-title-main">Anisogamy</span> Sexual reproduction involving a large, female gamete and a small, male gamete

Anisogamy is a form of sexual reproduction that involves the union or fusion of two gametes that differ in size and/or form. The smaller gamete is male, a sperm cell, whereas the larger gamete is female, typically an egg cell. Anisogamy is predominant among multicellular organisms. In both plants and animals gamete size difference is the fundamental difference between females and males.

<span class="mw-page-title-main">Isogamy</span> Sexual reproduction form involving gametes of the same size

Isogamy is a form of sexual reproduction that involves gametes of the same morphology, found in most unicellular eukaryotes. Because both gametes look alike, they generally cannot be classified as male or female. Instead, organisms undergoing isogamy are said to have different mating types, most commonly noted as "+" and "−" strains.

Dioecy is a characteristic of certain species that have distinct unisexual individuals, each producing either male or female gametes, either directly or indirectly. Dioecious reproduction is biparental reproduction. Dioecy has costs, since only the female part of the population directly produces offspring. It is one method for excluding self-fertilization and promoting allogamy (outcrossing), and thus tends to reduce the expression of recessive deleterious mutations present in a population. Plants have several other methods of preventing self-fertilization including, for example, dichogamy, herkogamy, and self-incompatibility.

<span class="mw-page-title-main">Sequential hermaphroditism</span> Sex change as part of the normal life cycle of a species

Sequential hermaphroditism is one of the two types of hermaphroditism, the other type being simultaneous hermaphroditism. It occurs when the organism's sex changes at some point in its life. In particular, a sequential hermaphrodite produces eggs and sperm at different stages in life. Sequential hermaphroditism occurs in many fish, gastropods, and plants. Species that can undergo these changes do so as a normal event within their reproductive cycle, usually cued by either social structure or the achievement of a certain age or size. In some species of fish, sequential hermaphroditism is much more common than simultaneous hermaphroditism.

<span class="mw-page-title-main">Male</span> Sex of an organism which produces sperm

Male is the sex of an organism that produces the gamete known as sperm, which fuses with the larger female gamete, or ovum, in the process of fertilization. A male organism cannot reproduce sexually without access to at least one ovum from a female, but some organisms can reproduce both sexually and asexually. Most male mammals, including male humans, have a Y chromosome, which codes for the production of larger amounts of testosterone to develop male reproductive organs.

<span class="mw-page-title-main">Fish reproduction</span> Reproductive physiology of fishes

Fish reproductive organs include testes and ovaries. In most species, gonads are paired organs of similar size, which can be partially or totally fused. There may also be a range of secondary organs that increase reproductive fitness. The genital papilla is a small, fleshy tube behind the anus in some fishes, from which the sperm or eggs are released; the sex of a fish can often be determined by the shape of its papilla.

<span class="mw-page-title-main">Oogamy</span> Form of sexual reproduction

Oogamy is a form of anisogamy where the gametes differ in both size and form. In oogamy the large female gamete is immotile, while the small male gamete is mobile. Oogamy is a common form of anisogamy, with almost all animals and land plants being oogamous.

<span class="mw-page-title-main">Environmental sex determination</span> Method of sex-determination

Environmental sex determination is the establishment of sex by a non-genetic cue, such as nutrient availability, experienced within a discrete period after fertilization. Environmental factors which often influence sex determination during development or sexual maturation include light intensity and photoperiod, temperature, nutrient availability, and pheromones emitted by surrounding plants or animals. This is in contrast to genotypic sex determination, which establishes sex at fertilization by genetic factors such as sex chromosomes. Under true environmental sex determination, once sex is determined, it is fixed and cannot be switched again. Environmental sex determination is different from some forms of sequential hermaphroditism in which the sex is determined flexibly after fertilization throughout the organism’s life.

Androdioecy is a reproductive system characterized by the coexistence of males and hermaphrodites. Androdioecy is rare in comparison with the other major reproductive systems: dioecy, gynodioecy and hermaphroditism. In animals, androdioecy has been considered a stepping stone in the transition from dioecy to hermaphroditism, and vice versa.

<span class="mw-page-title-main">Hermaphrodite</span> Sexually reproducing organism that produces both male and female gametes

A hermaphrodite is a sexually reproducing organism that produces both male and female gametes. Animal species in which individuals are of different sexes, either male or female but not both, are gonochoric, which is the opposite of hermaphroditic.

<span class="mw-page-title-main">Female</span> Sex of an organism that produces ova

An organism's sex is female if it produces the ovum, the type of gamete that fuses with the male gamete during sexual reproduction.

<span class="mw-page-title-main">Sexual reproduction</span> Reproduction process that creates a new organism by combining the genetic material of two organisms

Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete with a single set of chromosomes combines with another gamete to produce a zygote that develops into an organism composed of cells with two sets of chromosomes (diploid). This is typical in animals, though the number of chromosome sets and how that number changes in sexual reproduction varies, especially among plants, fungi, and other eukaryotes.

Social selection is a term used with varying meanings in biology.

Trioecy, tridioecy or subdioecy, is a sexual system characterized by the coexistence of males, females, and hermaphrodites. It has been found in both plants and animals. Trioecy, androdioecy and gynodioecy may be described as mixed mating systems.

<span class="mw-page-title-main">Monoecy</span> Sexual system in seed plants

Monoecy is a sexual system in seed plants where separate male and female cones or flowers are present on the same plant. It is a monomorphic sexual system comparable with gynomonoecy, andromonoecy and trimonoecy, and contrasted with dioecy where individual plants produce cones or flowers of only one sex.

A sexual system is a pattern of sex allocation or a distribution of male and female function across organisms in a species. Terms like reproductive system and mating system have also been used as synonyms.

References

  1. Cabej, Nelson R. (2013-04-01). Building the Most Complex Structure on Earth: An Epigenetic Narrative of Development and Evolution of Animals. Newnes. p. 101. ISBN   978-0-12-401729-0.
  2. Charnov, Eric L. (2020-03-31). The Theory of Sex Allocation. (MPB-18), Volume 18. Princeton University Press. p. 7. ISBN   978-0-691-21005-6.
  3. Ponder, Winston Frank; Lindberg, David R.; Ponder, Juliet Mary (2019-11-18). Biology and Evolution of the Mollusca, Volume 1. CRC Press. p. 439. ISBN   978-1-351-11565-0.
  4. Fusco, Giuseppe; Minelli, Alessandro (2019-10-10). The Biology of Reproduction. Cambridge University Press. pp. 299–300. ISBN   978-1-108-49985-9.
  5. 1 2 Rosenfield, Kevin A. (2018), "Hermaphrodite", in Vonk, Jennifer; Shackelford, Todd (eds.), Encyclopedia of Animal Cognition and Behavior, Cham: Springer International Publishing, pp. 1–2, doi:10.1007/978-3-319-47829-6_329-1, ISBN   978-3-319-47829-6 , retrieved 2021-09-24
  6. Doust, Jon Lovett; Doust, Lesley Lovett (1988). Plant Reproductive Ecology: Patterns and Strategies. Oxford University Press. p. 142. ISBN   978-0-19-506394-3.
  7. Leonard J, Cordoba-Aguilar A (2010-07-19). The Evolution of Primary Sexual Characters in Animals. Oxford University Press, USA. p. 20. ISBN   978-0-19-532555-3.
  8. Leonard, Janet; Cordoba-Aguilar, Alex (2010-07-16). The Evolution of Primary Sexual Characters in Animals. Oxford University Press. p. 130. ISBN   978-0-19-971703-3.
  9. Avise, John C. (2011-03-18). Hermaphroditism: A Primer on the Biology, Ecology, and Evolution of Dual Sexuality. Columbia University Press. p. 83. ISBN   978-0-231-52715-6.
  10. Ghiselin, Michael (1969). "The evolution of hermaphroditism among animals". The Quarterly Review of Biology. 44 (2): 189–208. doi:10.1086/406066. PMID   4901396. S2CID   38139187 via JSTOR.
  11. Beukeboom, Leo; Perrin, Nicolas (2014-06-12). The Evolution of Sex Determination. OUP Oxford. pp. 29–30. ISBN   978-0-19-163139-9.