Sorangium cellulosum

Last updated

Sorangium cellulosum
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Myxococcota
Class: Myxococcia
Order: Myxococcales
Family: Polyangiaceae
Genus: Sorangium
Species:
S. cellulosum
Binomial name
Sorangium cellulosum
(ex Jahn 1924) Reichenbach 2007

Sorangium cellulosum is a soil-dwelling Gram-negative bacterium of the group myxobacteria. [1] It is motile and shows gliding motility. Under stressful conditions this motility, as in other myxobacteria, the cells congregate to form fruiting bodies and differentiate into myxospores. These congregating cells make isolation of pure culture and colony counts on agar medium difficult as the bacterium spread and colonies merge. [2] It has an unusually-large genome of 13,033,779 base pairs, making it the largest bacterial genome sequenced to date by roughly 4 Mb. [3] [4]

Contents

Ecology

S. cellulosum is found in soils, animal feces, and tree bark. [5] The bacterium is a saprophyte deriving its nutrition from cellulose aerobically. It is a prolific producer of secondary fungicides and bactericides that reduce competition in soil environments. [6] In lab samples, S. cellulosum grows on agar medium only when certain cell densities are plated. Quorum-sensing allows Sorangium to grow in communities sufficiently large to metabolize cellulose. [2]

Secondary compounds

Sorangium produces 50% of all known metabolites produced by myxobacteria. [3] These include compounds that are antifungal, antibacterial, antibiotic resistant, or can even disable mammalian cells. These many compounds have sparked intense mining of its extensive genome in exploration of possible industrial and medical applications. Some of these secondary compounds include:

Industrial fermentation and genetic manipulation of S. cellulosum is challenging. Plasmids have been found to not function in S. cellulosum cells. Reproducible genetic alterations must be made directly into the single circular chromosome. [ failed verification ] [10]

Clinical use

Metabolites secreted by Sorangium cellulosum known as epothilones have been noted to have antineoplastic activity. [11] This has led to the development of analogs which mimic its activity. One such analog, known as ixabepilone is a U.S. Food and Drug Administration approved chemotherapy agent for the treatment of metastatic breast cancer. [12]

Related Research Articles

<span class="mw-page-title-main">Bacterial conjugation</span> Method of bacterial gene transfer

Bacterial conjugation is the transfer of genetic material between bacterial cells by direct cell-to-cell contact or by a bridge-like connection between two cells. This takes place through a pilus. It is a parasexual mode of reproduction in bacteria.

<span class="mw-page-title-main">Myxobacteria</span> Order of bacteria

The myxobacteria are a group of bacteria that predominantly live in the soil and feed on insoluble organic substances. The myxobacteria have very large genomes relative to other bacteria, e.g. 9–10 million nucleotides except for Anaeromyxobacter and Vulgatibacter. One species of myxobacteria, Minicystis rosea, has the largest known bacterial genome with over 16 million nucleotides. The second largest is another myxobacteria Sorangium cellulosum.

<span class="mw-page-title-main">Horizontal gene transfer</span> Transfer of genes from unrelated organisms

Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between organisms other than by the ("vertical") transmission of DNA from parent to offspring (reproduction). HGT is an important factor in the evolution of many organisms. HGT is influencing scientific understanding of higher-order evolution while more significantly shifting perspectives on bacterial evolution.

<i>Pseudomonas fluorescens</i> Species of bacterium

Pseudomonas fluorescens is a common Gram-negative, rod-shaped bacterium. It belongs to the Pseudomonas genus; 16S rRNA analysis as well as phylogenomic analysis has placed P. fluorescens in the P. fluorescens group within the genus, to which it lends its name.

<i>Streptomyces</i> Genus of bacteria

Streptomyces is the largest genus of Actinomycetota, and the type genus of the family Streptomycetaceae. Over 700 species of Streptomyces bacteria have been described. As with the other Actinomycetota, streptomycetes are gram-positive, and have very large genomes with high GC content. Found predominantly in soil and decaying vegetation, most streptomycetes produce spores, and are noted for their distinct "earthy" odor that results from production of a volatile metabolite, geosmin. Different strains of the same species may colonize very diverse environments.

<i>Halobacterium</i> Genus of archaea

Halobacterium is a genus in the family Halobacteriaceae.

<i>Myxococcus xanthus</i> Slime bacterium

Myxococcus xanthus is a gram-negative, bacillus species of myxobacteria that is typically found in the top-most layer of soil. These bacteria lack flagella; rather, they use pili for motility. M. xanthus is well-known for its predatory behavior on other microorganisms. These bacteria source carbon from lipids rather than sugars. They exhibit various forms of self-organizing behavior in response to environmental cues. Under normal conditions with abundant food, they exist as predatory, saprophytic single-species biofilm called a swarm, highlighting the importance of intercellular communication for these bacteria. Under starvation conditions, they undergo a multicellular development cycle.

<span class="mw-page-title-main">Epothilone</span> Class of chemical compounds

Epothilones are a class of potential cancer drugs. Like taxanes, they prevent cancer cells from dividing by interfering with tubulin, but in early trials, epothilones have better efficacy and milder adverse effects than taxanes.

<span class="mw-page-title-main">Bacteria</span> Domain of microorganisms

Bacteria are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of Earth's crust. Bacteria play a vital role in many stages of the nutrient cycle by recycling nutrients and the fixation of nitrogen from the atmosphere. The nutrient cycle includes the decomposition of dead bodies; bacteria are responsible for the putrefaction stage in this process. In the biological communities surrounding hydrothermal vents and cold seeps, extremophile bacteria provide the nutrients needed to sustain life by converting dissolved compounds, such as hydrogen sulphide and methane, to energy. Bacteria also live in mutualistic, commensal and parasitic relationships with plants and animals. Most bacteria have not been characterised and there are many species that cannot be grown in the laboratory. The study of bacteria is known as bacteriology, a branch of microbiology.

<span class="mw-page-title-main">Ixabepilone</span> Chemical compound

Ixabepilone is a pharmaceutical drug developed by Bristol-Myers Squibb as a chemotherapeutic medication for cancer.

Plant transformation vectors are plasmids that have been specifically designed to facilitate the generation of transgenic plants. The most commonly used plant transformation vectors are T-DNA binary vectors and are often replicated in both E. coli, a common lab bacterium, and Agrobacterium tumefaciens, a plant-virulent bacterium used to insert the recombinant DNA into plants.

<span class="mw-page-title-main">Prokaryote</span> Unicellular organism lacking a membrane-bound nucleus

A prokaryote is a single-cell organism whose cell lacks a nucleus and other membrane-bound organelles. The word prokaryote comes from the Ancient Greek πρό 'before' and κάρυον 'nut, kernel'. In the two-empire system arising from the work of Édouard Chatton, prokaryotes were classified within the empire Prokaryota. But in the three-domain system, based upon molecular analysis, prokaryotes are divided into two domains: Bacteria and Archaea. Organisms with nuclei are placed in a third domain, Eukaryota.

Stigmatella aurantiaca is a member of myxobacteria, a group of gram-negative bacteria with a complex developmental life cycle.

<i>Latilactobacillus sakei</i> Species of bacterium

Latilactobacillus sakei is the type species of the genus Latilactobacillus that was previously classified in the genus Lactobacillus. It is homofermentative; hexoses are metabolized via glycolysis to lactic acid as main metabolite; pentoses are fermented via the Phosphoketolase pathway to lactic and acetic acids.

<span class="mw-page-title-main">Lactocillin</span> Chemical compound

Lactocillin is a thiopeptide antibiotic which is encoded for and produced by biosynthetic genes clusters in the bacteria Lactobacillus gasseri. Lactocillin was discovered and purified in 2014. Lactobacillus gasseri is one of the four Lactobacillus bacteria found to be most common in the human vaginal microbiome. Due to increasing levels of pathogenic resistance to known antibiotics, novel antibiotics are increasingly valuable. Lactocillin could function as a new antibiotic that could help people fight off infections that are resistant to many other antibiotics.

<span class="mw-page-title-main">Utidelone</span> Drug for treatment of breast cancer

Utidelone is a pharmaceutical drug for the treatment of metastatic breast cancer. It was approved for use in China in 2021.

Enhygromyxa salina is a species of marine myxobacteria. Like other members of this order, E. salina is a rod-shaped Gram-negative bacterium that can move by gliding and can form aggregates of cells called fruiting bodies. E. salina is slightly halophilic (salt-tolerant) and can grow at lower temperatures than other marine myxobacteria. Several novel secondary metabolites have been identified in the species, including unusual sterols. The species was first described in 2003, based on six strains isolated from samples collected from the coastlines of Japan.

<span class="mw-page-title-main">Chlorotonil A</span> Polyketide product

Chlorotonil A is a polyketide natural product produced by the myxobacterium Sorangium cellulosum So ce1525. It displays antimalarial activity in an animal model, and has in vitro antibacterial and antifungal activity. The activity of chlorotonil A has been attributed to the gem-dichloro-1,3-dione moiety, which is a unique functionality in polyketides. In addition to its unique halogenation, the structure of chlorotonil A has also garnered interest due to its similarity to anthracimycin, a polyketide natural product with antibiotic activity against Gram-positive bacteria.

<span class="mw-page-title-main">Disorazol</span> Chemical compound

Disorazol, a cyclic polyketide synthesized by the bacterium Sorangium cellulosum So ce12, was first detected and isolated in 1994. Its chemical structure consists of a macrocyclic ring and two oxazole rings. Disorazol A has been demonstrated to exhibit anti-fungi activities, but it was not active against yeasts. In addition, this substance demonstrates potent anti-cancer characteristics at exceptionally low picomolar levels by obstructing the mechanism of tubulin assembly and triggering the disruption of microtubules. As a result, these impacts lead to the initiation of cell apoptosis. However, disorazols cannot be directly used as drugs in the clinic due to its extremely high cytotoxicity and instability. Thus, chemical and biosynthetic synthesis pathways were designed to synthesize unnatural derivatives of disorazol in hope of reducing its cytotoxicity without decreasing its anti-cancer potency.

Tartrolons are a group of boron-containing macrolide antibiotics discovered in 1994 from the culture broth of the myxobacterium Sorangium cellulosum. Two variants of tartrolons, A and B, were identified. Tartrolon B contains a boron atom, while tartrolon A does not.

References

  1. Julien B, Fehd R (2003). "Development of a mariner-based transposon for use in Sorangium cellulosum". Appl Environ Microbiol. 69 (10): 6299–301. Bibcode:2003ApEnM..69.6299J. doi:10.1128/AEM.69.10.6299-6301.2003. PMC   201241 . PMID   14532095.
  2. 1 2 Reichenbach H.; Hofle, G. (1999). "Myxobacteria as producer of secondary metabolites". In Grabley, S.; Thiericke, R. (eds.). Drug Discovery from Nature. pp. 149–179. ISBN   978-3-540-66947-0.
  3. 1 2 Schneiker S, et al. (2007). "Complete genome sequence of the myxobacterium Sorangium cellulosum". Nature Biotechnology. 25 (11): 1281–1289. doi: 10.1038/nbt1354 . PMID   17965706.
  4. "Largest known bacterial genome size - Bacteria Sorangium cellulosum - BNID 104469". bionumbers.hms.harvard.edu. Retrieved 2024-05-02.
  5. 1 2 Zirkle, R.; Ligon, J.M.; Molnar, I. (2004). "Heterologous production of the antifungal polyketide antibiotic soraphen A of Sorangium cellulosumvSo ce26 in Streptomyces lividans". Microbiology. 150 (Pt 8): 2761–2774. doi: 10.1099/mic.0.27138-0 . PMID   15289572.
  6. Pradella, S.; Hans, A.; Sproer, C.; Reichenbach, H.; Gerth, K.; Beyer, S. (2002). "Characterization, genome size and genetic manipulation of the myxobacerium Sorangium cellulosum So ce56". Arch Microbiol. 178 (6): 484–494. doi:10.1007/s00203-002-0479-2. PMID   12420170. S2CID   21023021.
  7. Perlova, Olena; Klaus Gerth; Olaf Kaiser; Astrid Hans; Rolf Müller (24 January 2006). "Identification and analysis of the chivosazol biosynthetic gene cluster from the myxobacterial model strain Sorangium cellulosum So ce56". Journal of Biotechnology. 121 (2): 174–191. doi:10.1016/j.jbiotec.2005.10.011. PMID   16313990.
  8. Goodin, Susan; Michael P. Kane; Eric H. Rubin (15 May 2004). "Epothilones: Mechanism of Action and Biologic Activity". Journal of Clinical Oncology. 22 (10): 2015–2025. doi:10.1200/JCO.2004.12.001. PMID   15143095.
  9. Gaitatzis, Nikolaos; Brigitte Kunze; Rolf Muller (25 September 2001). "In vitro reconstitution of the myxochelin biosynthetic machinery of Stigmatella aurantiaca Sg a15: Biochemical characterization of a reductive release mechanism from nonribosomal peptide synthetases". Proc Natl Acad Sci U S A. 98 (20): 11136–11141. Bibcode:2001PNAS...9811136G. doi: 10.1073/pnas.201167098 . PMC   58696 . PMID   11562468.
  10. Jaoua, S.; Neff, S.; Schupp, T. (1992). "Transfer of mobilizable plasmids to Sorangium cellulosum and evidence for their integration into the chromosome". Plasmid. 28 (2): 157–165. doi:10.1016/0147-619x(92)90046-d. PMID   1409972.
  11. Lee FY, Borzilleri R, Fairchild CR, et al. (December 2008). "Preclinical discovery of ixabepilone, a highly active antineoplastic agent". Cancer Chemother. Pharmacol. 63 (1): 157–66. doi: 10.1007/s00280-008-0724-8 . PMID   18347795.
  12. Ixabepilone