Species pool

Last updated

The ecological and biogeographical concept of the species pool describes all species available that could potentially colonize and inhabit a focal habitat area. [1] [2] The concept lays emphasis on the fact that "local communities aren't closed systems, and that the species occupying any local site typically came from somewhere else", however, the species pool concept may suffer from the logical fallacy of composition. [3] Most local communities, however, have just a fraction of its species pool present. It is derived from MacArthur and Wilson's Island Biogeography Theory that examines the factors that affect the species richness of isolated natural communities. It helps to understand the composition and richness of local communities and how they are influenced by biogeographic and evolutionary processes acting at large spatial and temporal scales. [1] The absent portion of species pool—dark diversity—has been used to understand processes influencing local communities. [4] Methods to estimate potential but absent species are developing. [4]

It has been hypothesized that there might be a direct correlation between species richness and the size of the species pool for plant communities. [5] Elsewhere, it was reported that "trade-offs and species pool structure (size and trait distribution) determines the shape of the plant productivity-diversity relationship. [6]


Related Research Articles

<span class="mw-page-title-main">Ecology</span> Study of organisms and their environment

Ecology is the study of the relationships among living organisms, including humans, and their physical environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere level. Ecology overlaps with the closely related sciences of biogeography, evolutionary biology, genetics, ethology, and natural history.

<span class="mw-page-title-main">Herbivore</span> Organism that eats mostly or exclusively plant material

A herbivore is an animal anatomically and physiologically adapted to eating plant material, for example foliage or marine algae, for the main component of its diet. As a result of their plant diet, herbivorous animals typically have mouthparts adapted to rasping or grinding. Horses and other herbivores have wide flat teeth that are adapted to grinding grass, tree bark, and other tough plant material.

<span class="mw-page-title-main">Biogeography</span> Study of the distribution of species and ecosystems in geographic space and through geological time

Biogeography is the study of the distribution of species and ecosystems in geographic space and through geological time. Organisms and biological communities often vary in a regular fashion along geographic gradients of latitude, elevation, isolation and habitat area. Phytogeography is the branch of biogeography that studies the distribution of plants. Zoogeography is the branch that studies distribution of animals. Mycogeography is the branch that studies distribution of fungi, such as mushrooms.

Phylogeography is the study of the historical processes that may be responsible for the past to present geographic distributions of genealogical lineages. This is accomplished by considering the geographic distribution of individuals in light of genetics, particularly population genetics.

<span class="mw-page-title-main">Ecosystem engineer</span> Ecological niche

An ecosystem engineer is any species that creates, significantly modifies, maintains or destroys a habitat. These organisms can have a large impact on species richness and landscape-level heterogeneity of an area. As a result, ecosystem engineers are important for maintaining the health and stability of the environment they are living in. Since all organisms impact the environment they live in one way or another, it has been proposed that the term "ecosystem engineers" be used only for keystone species whose behavior very strongly affects other organisms.

The diversity of species and genes in ecological communities affects the functioning of these communities. These ecological effects of biodiversity in turn are affected by both climate change through enhanced greenhouse gases, aerosols and loss of land cover, and biological diversity, causing a rapid loss of biodiversity and extinctions of species and local populations. The current rate of extinction is sometimes considered a mass extinction, with current species extinction rates on the order of 100 to 1000 times as high as in the past.

Insular biogeography or island biogeography is a field within biogeography that examines the factors that affect the species richness and diversification of isolated natural communities. The theory was originally developed to explain the pattern of the species–area relationship occurring in oceanic islands. Under either name it is now used in reference to any ecosystem that is isolated due to being surrounded by unlike ecosystems, and has been extended to mountain peaks, seamounts, oases, fragmented forests, and even natural habitats isolated by human land development. The field was started in the 1960s by the ecologists Robert H. MacArthur and E. O. Wilson, who coined the term island biogeography in their inaugural contribution to Princeton's Monograph in Population Biology series, which attempted to predict the number of species that would exist on a newly created island.

<span class="mw-page-title-main">Intermediate disturbance hypothesis</span> Model proposing regional biodiversity is increased by a moderate level of ecological disturbance

The intermediate disturbance hypothesis (IDH) suggests that local species diversity is maximized when ecological disturbance is neither too rare nor too frequent. At low levels of disturbance, more competitive organisms will push subordinate species to extinction and dominate the ecosystem. At high levels of disturbance, due to frequent forest fires or human impacts like deforestation, all species are at risk of going extinct. According to IDH theory, at intermediate levels of disturbance, diversity is thus maximized because species that thrive at both early and late successional stages can coexist. IDH is a nonequilibrium model used to describe the relationship between disturbance and species diversity. IDH is based on the following premises: First, ecological disturbances have major effects on species richness within the area of disturbance. Second, interspecific competition results in one species driving a competitor to extinction and becoming dominant in the ecosystem. Third, moderate ecological scale disturbances prevent interspecific competition.

A functional group is merely a set of species, or collection of organisms, that share alike characteristics within a community. Ideally, the lifeforms would perform equivalent tasks based on domain forces, rather than a common ancestor or evolutionary relationship. This could potentially lead to analogous structures that overrule the possibility of homology. More specifically, these beings produce resembling effects to external factors of an inhabiting system. Due to the fact that a majority of these creatures share an ecological niche, it is practical to assume they require similar structures in order to achieve the greatest amount of fitness. This refers to such as the ability to successfully reproduce to create offspring, and furthermore sustain life by avoiding alike predators and sharing meals.

<span class="mw-page-title-main">Functional ecology</span>

Functional ecology is a branch of ecology that focuses on the roles, or functions, that species play in the community or ecosystem in which they occur. In this approach, physiological, anatomical, and life history characteristics of the species are emphasized. The term "function" is used to emphasize certain physiological processes rather than discrete properties, describe an organism's role in a trophic system, or illustrate the effects of natural selective processes on an organism. This sub-discipline of ecology represents the crossroads between ecological patterns and the processes and mechanisms that underlie them. It focuses on traits represented in large number of species and can be measured in two ways – the first being screening, which involves measuring a trait across a number of species, and the second being empiricism, which provides quantitative relationships for the traits measured in screening. Functional ecology often emphasizes an integrative approach, using organism traits and activities to understand community dynamics and ecosystem processes, particularly in response to the rapid global changes occurring in earth's environment.

<span class="mw-page-title-main">Latitudinal gradients in species diversity</span> Global increase in species richness from polar regions to tropics

Species richness, or biodiversity, increases from the poles to the tropics for a wide variety of terrestrial and marine organisms, often referred to as the latitudinal diversity gradient. The latitudinal diversity gradient is one of the most widely recognized patterns in ecology. It has been observed to varying degrees in Earth's past. A parallel trend has been found with elevation, though this is less well-studied.

In ecology, beta diversity is the ratio between regional and local species diversity. The term was introduced by R. H. Whittaker together with the terms alpha diversity (α-diversity) and gamma diversity (γ-diversity). The idea was that the total species diversity in a landscape (γ) is determined by two different things: the mean species diversity at the local level (α) and the differentiation among local sites (β). Other formulations for beta diversity include "absolute species turnover", "Whittaker's species turnover" and "proportional species turnover".

<span class="mw-page-title-main">Community (ecology)</span> Associated populations of species in a given area

In ecology, a community is a group or association of populations of two or more different species occupying the same geographical area at the same time, also known as a biocoenosis, biotic community, biological community, ecological community, or life assemblage. The term community has a variety of uses. In its simplest form it refers to groups of organisms in a specific place or time, for example, "the fish community of Lake Ontario before industrialization".

<span class="mw-page-title-main">Martin Zobel</span> Estonian plant ecologist

Martin Zobel is an Estonian plant ecologist and professor at the University of Tartu. His name is particularly associated with the idea of an impact of regional species diversity on diversity at smaller spatial scales – known as the species pool effect. He has been professor since 1992. He has served as Editor-in-Chief of the scientific journal Ecography.

In ecology, the term productivity refers to the rate of generation of biomass in an ecosystem, usually expressed in units of mass per volume per unit of time, such as grams per square metre per day. The unit of mass can relate to dry matter or to the mass of generated carbon. The productivity of autotrophs, such as plants, is called primary productivity, while the productivity of heterotrophs, such as animals, is called secondary productivity.

In ecology, a priority effect refers to the impact that a particular species can have on community development as a result of its prior arrival at a site. There are two basic types of priority effects: inhibitory and facilitative. An inhibitory priority effect occurs when a species that arrives first at a site negatively affects a species that arrives later by reducing the availability of space or resources. In contrast, a facilitative priority effect occurs when a species that arrives first at a site alters abiotic or biotic conditions in ways that positively affect a species that arrives later. Inhibitory priority effects have been documented more frequently than facilitative priority effects. Studies indicate that both abiotic and biotic factors can affect the strength of priority effects. Priority effects are a central and pervasive element of ecological community development that have significant implications for natural systems and ecological restoration efforts.

<span class="mw-page-title-main">Elevational diversity gradient</span> Ecological pattern in which biodiversity changes with elevation

Elevational diversity gradient (EDG) is an ecological pattern where biodiversity changes with elevation. The EDG states that species richness tends to decrease as elevation increases, up to a certain point, creating a "diversity bulge" at middle elevations. There have been multiple hypotheses proposed for explaining the EDG, none of which accurately describe the phenomenon in full.

Dark diversity is the set of species that are absent from a study site but present in the surrounding region and potentially able to inhabit particular ecological conditions. It can be determined based on species distribution, dispersal potential and ecological needs. The term was introduced in 2011 by three researchers from the University of Tartu and was inspired by the idea of dark matter in physics since dark diversity too cannot be directly observed.

Biotic homogenization is the process by which two or more spatially distributed ecological communities become increasingly similar over time. This process may be genetic, taxonomic, or functional, and it leads to a loss of beta (β) diversity. While the term is sometimes used interchangeably with "taxonomic homogenization", "functional homogenization", and "genetic homogenization", biotic homogenization is actually an overarching concept that encompasses the other three. This phenomenon stems primarily from two sources: extinctions of native and invasions of nonnative species. While this process pre-dates human civilization, as evidenced by the fossil record, and still occurs due to natural impacts, it has recently been accelerated due anthropogenic pressures. Biotic homogenization has become recognized as a significant component of the biodiversity crisis, and as such has become of increasing importance to conservation ecologists.

Herbivores' effects on plant diversity vary across environmental changes. Herbivores could increase plant diversity or decrease plant diversity. Loss of plant diversity due to climate change can also affect herbivore and plant community relationships

References

  1. 1 2 Howard V. Cornell; Susan P. Harrison (2014). "What Are Species Pools and When Are They Important?". Annual Review of Ecology, Evolution, and Systematics. 45 (1): 651. doi: 10.1146/annurev-ecolsys-120213-091759 .
  2. Zobel, M. (2016). "The species pool concept as a framework for studying patterns of plant diversity". Journal of Vegetation Science. 27 (1): 8–18. Bibcode:2016JVegS..27....8Z. doi:10.1111/jvs.12333.
  3. Jeremy Fox (2011). "Species pools and the fallacy of composition". in any complete explanation of local community structure, the properties of the species pool won't be exogenously determined. There's nowhere on earth that's external to community ecology; every population of every species is and always has been part of some local community somewhere
  4. 1 2 Pärtel, M.; Szava-Kovats, R; Zobel, M. (2011). "Dark diversity: shedding light on absent species". Trends in Ecology and Evolution. 26 (3): 124–128. doi:10.1016/j.tree.2010.12.004. PMID   21195505.
  5. Eriksson, Ove (1993). "The Species-Pool Hypothesis and Plant Community Diversity". Oikos. 68 (2): 371–374. Bibcode:1993Oikos..68..371E. doi:10.2307/3544854. ISSN   0030-1299. JSTOR   3544854. High species diversity is expected when the existing species-pool contains many species, and comparatively low species diversity will be found when the species-pool is small.
  6. Chalmandrier, Loïc; Albouy, Camille; Pellissier, Loïc (2017-11-13). "Species pool distributions along functional trade-offs shape plant productivity–diversity relationships". Scientific Reports. 7 (1): 15405. Bibcode:2017NatSR...715405C. doi:10.1038/s41598-017-15334-4. ISSN   2045-2322. PMC   5684142 . PMID   29133911.