Spin chain

Last updated

A spin chain is a type of model in statistical physics. Spin chains were originally formulated to model magnetic systems, which typically consist of particles with magnetic spin located at fixed sites on a lattice. A prototypical example is the quantum Heisenberg model. Interactions between the sites are modelled by operators which act on two different sites, often neighboring sites.

Contents

They can be seen as a quantum version of statistical lattice models, such as the Ising model, in the sense that the parameter describing the spin at each site is promoted from a variable taking values in a discrete set (typically , representing 'spin up' and 'spin down') to a variable taking values in a vector space (typically the spin-1/2 or two-dimensional representation of ).

History

The prototypical example of a spin chain is the Heisenberg model, described by Werner Heisenberg in 1928. [1] This models a one-dimensional lattice of fixed particles with spin 1/2. A simple version (the antiferromagnetic XXX model) was solved, that is, the spectrum of the Hamiltonian of the Heisenberg model was determined, by Hans Bethe using the Bethe ansatz. [2] Now the term Bethe ansatz is used generally to refer to many ansatzes used to solve exactly solvable problems in spin chain theory such as for the other variations of the Heisenberg model (XXZ, XYZ), and even in statistical lattice theory, such as for the six-vertex model.

Another spin chain with physical applications is the Hubbard model, introduced by John Hubbard in 1963. [3] This model was shown to be exactly solvable by Elliott Lieb and Fa-Yueh Wu in 1968. [4]

Another example of (a class of) spin chains is the Gaudin model, described and solved by Michel Gaudin in 1976 [5]

Mathematical description

The lattice is described by a graph with vertex set and edge set .

The model has an associated Lie algebra . More generally, this Lie algebra can be taken to be any complex, finite-dimensional semi-simple Lie algebra . More generally still it can be taken to be an arbitrary Lie algebra.

Each vertex has an associated representation of the Lie algebra , labelled . This is a quantum generalization of statistical lattice models, where each vertex has an associated 'spin variable'.

The Hilbert space for the whole system, which could be called the configuration space, is the tensor product of the representation spaces at each vertex:

A Hamiltonian is then an operator on the Hilbert space. In the theory of spin chains, there are possibly many Hamiltonians which mutually commute. This allows the operators to be simultaneously diagonalized.

There is a notion of exact solvability for spin chains, often stated as determining the spectrum of the model. In precise terms, this means determining the simultaneous eigenvectors of the Hilbert space for the Hamiltonians of the system as well as the eigenvalues of each eigenvector with respect to each Hamiltonian.

Examples

Spin 1/2 XXX model in detail

The prototypical example, and a particular example of the Heisenberg spin chain, is known as the spin 1/2 Heisenberg XXX model. [6]

The graph is the periodic 1-dimensional lattice with -sites. Explicitly, this is given by , and the elements of being with identified with .

The associated Lie algebra is .

At site there is an associated Hilbert space which is isomorphic to the two dimensional representation of (and therefore further isomorphic to ). The Hilbert space of system configurations is , of dimension .

Given an operator on the two-dimensional representation of , denote by the operator on which acts as on and as identity on the other with . Explicitly, it can be written

where the 1 denotes identity.

The Hamiltonian is essentially, up to an affine transformation, with implied summation over index , and where are the Pauli matrices. The Hamiltonian has symmetry under the action of the three total spin operators.

The central problem is then to determine the spectrum (eigenvalues and eigenvectors in ) of the Hamiltonian. This is solved by the method of an Algebraic Bethe ansatz, discovered by Hans Bethe and further explored by Ludwig Faddeev.

List of spin chains

See also

Related Research Articles

The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which are a kind of linear space. Such are distinguished from mathematical formalisms for physics theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces, and operators on these spaces. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely as spectral values of linear operators in Hilbert space.

<span class="mw-page-title-main">Lattice model (physics)</span>

In mathematical physics, a lattice model is a mathematical model of a physical system that is defined on a lattice, as opposed to a continuum, such as the continuum of space or spacetime. Lattice models originally occurred in the context of condensed matter physics, where the atoms of a crystal automatically form a lattice. Currently, lattice models are quite popular in theoretical physics, for many reasons. Some models are exactly solvable, and thus offer insight into physics beyond what can be learned from perturbation theory. Lattice models are also ideal for study by the methods of computational physics, as the discretization of any continuum model automatically turns it into a lattice model. The exact solution to many of these models includes the presence of solitons. Techniques for solving these include the inverse scattering transform and the method of Lax pairs, the Yang–Baxter equation and quantum groups. The solution of these models has given insights into the nature of phase transitions, magnetization and scaling behaviour, as well as insights into the nature of quantum field theory. Physical lattice models frequently occur as an approximation to a continuum theory, either to give an ultraviolet cutoff to the theory to prevent divergences or to perform numerical computations. An example of a continuum theory that is widely studied by lattice models is the QCD lattice model, a discretization of quantum chromodynamics. However, digital physics considers nature fundamentally discrete at the Planck scale, which imposes upper limit to the density of information, aka Holographic principle. More generally, lattice gauge theory and lattice field theory are areas of study. Lattice models are also used to simulate the structure and dynamics of polymers.

<span class="mw-page-title-main">Representation of a Lie group</span> Group representation

In mathematics and theoretical physics, a representation of a Lie group is a linear action of a Lie group on a vector space. Equivalently, a representation is a smooth homomorphism of the group into the group of invertible operators on the vector space. Representations play an important role in the study of continuous symmetry. A great deal is known about such representations, a basic tool in their study being the use of the corresponding 'infinitesimal' representations of Lie algebras.

In the field of representation theory in mathematics, a projective representation of a group G on a vector space V over a field F is a group homomorphism from G to the projective linear group

The density matrix renormalization group (DMRG) is a numerical variational technique devised to obtain the low-energy physics of quantum many-body systems with high accuracy. As a variational method, DMRG is an efficient algorithm that attempts to find the lowest-energy matrix product state wavefunction of a Hamiltonian. It was invented in 1992 by Steven R. White and it is nowadays the most efficient method for 1-dimensional systems.

In mathematics, a vertex operator algebra (VOA) is an algebraic structure that plays an important role in two-dimensional conformal field theory and string theory. In addition to physical applications, vertex operator algebras have proven useful in purely mathematical contexts such as monstrous moonshine and the geometric Langlands correspondence.

In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. Given an affine Lie algebra, one can also form the associated affine Kac-Moody algebra, as described below. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite-dimensional semisimple Lie algebras, is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities.

In mathematics, integrability is a property of certain dynamical systems. While there are several distinct formal definitions, informally speaking, an integrable system is a dynamical system with sufficiently many conserved quantities, or first integrals, that its motion is confined to a submanifold of much smaller dimensionality than that of its phase space.

In physics, the Bethe ansatz is an ansatz for finding the exact wavefunctions of certain quantum many-body models, most commonly for one-dimensional lattice models. It was first used by Hans Bethe in 1931 to find the exact eigenvalues and eigenvectors of the one-dimensional antiferromagnetic isotropic (XXX) Heisenberg model.

A quasi-Hopf algebra is a generalization of a Hopf algebra, which was defined by the Russian mathematician Vladimir Drinfeld in 1989.

The quantum Heisenberg model, developed by Werner Heisenberg, is a statistical mechanical model used in the study of critical points and phase transitions of magnetic systems, in which the spins of the magnetic systems are treated quantum mechanically. It is related to the prototypical Ising model, where at each site of a lattice, a spin represents a microscopic magnetic dipole to which the magnetic moment is either up or down. Except the coupling between magnetic dipole moments, there is also a multipolar version of Heisenberg model called the multipolar exchange interaction.

In mathematics and physics, in particular quantum information, the term generalized Pauli matrices refers to families of matrices which generalize the properties of the Pauli matrices. Here, a few classes of such matrices are summarized.

The Majumdar–Ghosh model is a one-dimensional quantum Heisenberg spin model in which the nearest-neighbour antiferromagnetic exchange interaction is twice as strong as the next-nearest-neighbour interaction. It is a special case of the more general - model, with . The model is named after Indian physicists Chanchal Kumar Majumdar and Dipan Ghosh.

In quantum physics, the quantum inverse scattering method (QISM) or the algebraic Bethe ansatz is a method for solving integrable models in 1+1 dimensions, introduced by Leon Takhtajan and L. D. Faddeev in 1979.

In physics, the Gaudin model, sometimes known as the quantum Gaudin model, is a model, or a large class of models, in statistical mechanics first described in its simplest case by Michel Gaudin. They are exactly solvable models, and are also examples of quantum spin chains.

In mathematics, an Oper is a principal connection, or in more elementary terms a type of differential operator. They were first defined and used by Vladimir Drinfeld and Vladimir Sokolov to study how the KdV equation and related integrable PDEs correspond to algebraic structures known as Kac–Moody algebras. Their modern formulation is due to Drinfeld and Alexander Beilinson.

In mathematical physics, the Garnier integrable system, also known as the classical Gaudin model is a classical mechanical system discovered by René Garnier in 1919 by taking the 'Painlevé simplification' or 'autonomous limit' of the Schlesinger equations. It is a classical analogue to the quantum Gaudin model due to Michel Gaudin. The classical Gaudin models are integrable.

In mathematical physics, four-dimensional Chern–Simons theory, also known as semi-holomorphic or semi-topological Chern–Simons theory, is a quantum field theory initially defined by Nikita Nekrasov, rediscovered and studied by Kevin Costello, and later by Edward Witten and Masahito Yamazaki. It is named after mathematicians Shiing-Shen Chern and James Simons who discovered the Chern–Simons 3-form appearing in the theory.

In statistical physics, the Inozemtsev model is a spin chain model, defined on a one-dimensional, periodic lattice. Unlike the prototypical Heisenberg spin chain, which only includes interactions between neighboring sites of the lattice, the Inozemtsev model has long-range interactions, that is, interactions between any pair of sites, regardless of the distance between them.

In statistical physics, the Haldane–Shastry model is a spin chain model, defined on a one-dimensional, periodic lattice. Unlike the prototypical Heisenberg spin chain, which only includes interactions between neighboring sites of the lattice, the Haldane–Shastry model has long-range interactions, that is, interactions between any pair of sites, regardless of the distance between them.

References

  1. Heisenberg, Werner (September 1928). "Zur Theorie des Ferromagnetismus". Zeitschrift für Physik. 49 (9–10): 619–636. Bibcode:1928ZPhy...49..619H. doi:10.1007/BF01328601. S2CID   122524239 . Retrieved 4 October 2022.
  2. Bethe, H. (March 1931). "Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette". Zeitschrift für Physik. 71 (3–4): 205–226. doi:10.1007/BF01341708. S2CID   124225487.
  3. Hubbard, John (26 November 1963). "Electron correlations in narrow energy bands". Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 276 (1365): 238–257. Bibcode:1963RSPSA.276..238H. doi:10.1098/rspa.1963.0204. S2CID   35439962.
  4. Lieb, Elliott H.; Wu, F. Y. (17 June 1968). "Absence of Mott Transition in an Exact Solution of the Short-Range, One-Band Model in One Dimension". Physical Review Letters. 20 (25): 1445–1448. Bibcode:1968PhRvL..20.1445L. doi:10.1103/PhysRevLett.20.1445.
  5. Gaudin, Michel (1976). "Diagonalisation d'une classe d'hamiltoniens de spin". Journal de Physique. 37 (10): 1087–1098. doi:10.1051/jphys:0197600370100108700 . Retrieved 26 September 2022.
  6. Faddeev, Ludwig (1996). "How Algebraic Bethe Ansatz works for integrable model". arXiv: hep-th/9605187 .