Structuralism (philosophy of mathematics)

Last updated

Structuralism is a theory in the philosophy of mathematics that holds that mathematical theories describe structures of mathematical objects. Mathematical objects are exhaustively defined by their place in such structures. Consequently, structuralism maintains that mathematical objects do not possess any intrinsic properties but are defined by their external relations in a system. For instance, structuralism holds that the number 1 is exhaustively defined by being the successor of 0 in the structure of the theory of natural numbers. By generalization of this example, any natural number is defined by its respective place in that theory. Other examples of mathematical objects might include lines and planes in geometry, or elements and operations in abstract algebra.

Contents

Structuralism is an epistemologically realistic view in that it holds that mathematical statements have an objective truth value. However, its central claim only relates to what kind of entity a mathematical object is, not to what kind of existence mathematical objects or structures have (not, in other words, to their ontology). The kind of existence that mathematical objects have would be dependent on that of the structures in which they are embedded; different sub-varieties of structuralism make different ontological claims in this regard. [1]

Structuralism in the philosophy of mathematics is particularly associated with Paul Benacerraf, Geoffrey Hellman, Michael Resnik, Stewart Shapiro and James Franklin.

Historical motivation

The historical motivation for the development of structuralism derives from a fundamental problem of ontology. Since Medieval times, philosophers have argued as to whether the ontology of mathematics contains abstract objects. In the philosophy of mathematics, an abstract object is traditionally defined as an entity that: (1) exists independent of the mind; (2) exists independent of the empirical world; and (3) has eternal, unchangeable properties. Traditional mathematical Platonism maintains that some set of mathematical elements—natural numbers, real numbers, functions, relations, systems—are such abstract objects. Contrarily, mathematical nominalism denies the existence of any such abstract objects in the ontology of mathematics.

In the late 19th and early 20th century, a number of anti-Platonist programs gained in popularity. These included intuitionism, formalism, and predicativism. By the mid-20th century, however, these anti-Platonist theories had a number of their own issues. This subsequently resulted in a resurgence of interest in Platonism. It was in this historic context that the motivations for structuralism developed. In 1965, Paul Benacerraf published a paradigm changing article entitled "What Numbers Could Not Be". [2] Benacerraf concluded, on two principal arguments, that set-theoretic Platonism cannot succeed as a philosophical theory of mathematics.

Firstly, Benacerraf argued that Platonic approaches do not pass the ontological test. [2] He developed an argument against the ontology of set-theoretic Platonism, which is now historically referred to as Benacerraf's identification problem. Benacerraf noted that there are elementarily equivalent, set-theoretic ways of relating natural numbers to pure sets. However, if someone asks for the "true" identity statements for relating natural numbers to pure sets, then different set-theoretic methods yield contradictory identity statements when these elementarily equivalent sets are related together. [2] This generates a set-theoretic falsehood. Consequently, Benacerraf inferred that this set-theoretic falsehood demonstrates it is impossible for there to be any Platonic method of reducing numbers to sets that reveals any abstract objects.

Secondly, Benacerraf argued that Platonic approaches do not pass the epistemological test. Benacerraf contended that there does not exist an empirical or rational method for accessing abstract objects. If mathematical objects are not spatial or temporal, then Benacerraf infers that such objects are not accessible through the causal theory of knowledge. [3] The fundamental epistemological problem thus arises for the Platonist to offer a plausible account of how a mathematician with a limited, empirical mind is capable of accurately accessing mind-independent, world-independent, eternal truths. It was from these considerations, the ontological argument and the epistemological argument, that Benacerraf's anti-Platonic critiques motivated the development of structuralism in the philosophy of mathematics.

Varieties

Stewart Shapiro divides structuralism into three major schools of thought. [4] These schools are referred to as the ante rem, the in re, and the post rem.

The ante rem structuralism [5] ("before the thing"), or abstract structuralism [4] or abstractionism [6] [7] (particularly associated with Michael Resnik, [4] Stewart Shapiro, [4] Edward N. Zalta, [8] and Øystein Linnebo) [9] has a similar ontology to Platonism (see also modal neo-logicism). Structures are held to have a real but abstract and immaterial existence. As such, it faces the standard epistemological problem, as noted by Benacerraf, of explaining the interaction between such abstract structures and flesh-and-blood mathematicians. [3]

The in re structuralism [5] ("in the thing"), [5] or modal structuralism [4] (particularly associated with Geoffrey Hellman), [4] is the equivalent of Aristotelian realism [10] (realism in truth value, but anti-realism about abstract objects in ontology). Structures are held to exist inasmuch as some concrete system exemplifies them. This incurs the usual issues that some perfectly legitimate structures might accidentally happen not to exist, and that a finite physical world might not be "big" enough to accommodate some otherwise legitimate structures. The Aristotelian realism of James Franklin is also an in re structuralism, arguing that structural properties such as symmetry are instantiated in the physical world and are perceivable. [11] In reply to the problem of uninstantiated structures that are too big to fit into the physical world, Franklin replies that other sciences can also deal with uninstantiated universals; for example the science of color can deal with a shade of blue that happens not to occur on any real object. [12]

The post rem structuralism [13] ("after the thing"), or eliminative structuralism [4] (particularly associated with Paul Benacerraf), [4] is anti-realist about structures in a way that parallels nominalism. Like nominalism, the post rem approach denies the existence of abstract mathematical objects with properties other than their place in a relational structure. According to this view mathematical systems exist, and have structural features in common. If something is true of a structure, it will be true of all systems exemplifying the structure. However, it is merely instrumental to talk of structures being "held in common" between systems: they in fact have no independent existence.

See also

Precursors

Related Research Articles

In analytic philosophy, anti-realism is a position which encompasses many varieties such as metaphysical, mathematical, semantic, scientific, moral and epistemic. The term was first articulated by British philosopher Michael Dummett in an argument against a form of realism Dummett saw as 'colorless reductionism'.

<span class="mw-page-title-main">Nominalism</span> Philosophy emphasizing names and labels

In metaphysics, nominalism is the view that universals and abstract objects do not actually exist other than being merely names or labels. There are at least two main versions of nominalism. One version denies the existence of universals – things that can be instantiated or exemplified by many particular things. The other version specifically denies the existence of abstract objects – objects that do not exist in space and time.

<span class="mw-page-title-main">Problem of universals</span> Philosophical question of whether properties exist and, if so, what they are

The problem of universals is an ancient question from metaphysics that has inspired a range of philosophical topics and disputes: "Should the properties an object has in common with other objects, such as color and shape, be considered to exist beyond those objects? And if a property exists separately from objects, what is the nature of that existence?"

In metaphysics, a universal is what particular things have in common, namely characteristics or qualities. In other words, universals are repeatable or recurrent entities that can be instantiated or exemplified by many particular things. For example, suppose there are two chairs in a room, each of which is green. These two chairs share the quality of "chairness", as well as greenness or the quality of being green; in other words, they share two "universals". There are three major kinds of qualities or characteristics: types or kinds, properties, and relations. These are all different types of universals.

The philosophy of mathematics is the branch of philosophy that studies the assumptions, foundations, and implications of mathematics. It aims to understand the nature and methods of mathematics, and find out the place of mathematics in people's lives. The logical and structural nature of mathematics makes this branch of philosophy broad and unique.

<span class="mw-page-title-main">Aristotelianism</span> Philosophical tradition inspired by the work of Aristotle

Aristotelianism is a philosophical tradition inspired by the work of Aristotle, usually characterized by deductive logic and an analytic inductive method in the study of natural philosophy and metaphysics. It covers the treatment of the social sciences under a system of natural law. It answers why-questions by a scheme of four causes, including purpose or teleology, and emphasizes virtue ethics. Aristotle and his school wrote tractates on physics, biology, metaphysics, logic, ethics, aesthetics, poetry, theatre, music, rhetoric, psychology, linguistics, economics, politics, and government. Any school of thought that takes one of Aristotle's distinctive positions as its starting point can be considered "Aristotelian" in the widest sense. This means that different Aristotelian theories may not have much in common as far as their actual content is concerned besides their shared reference to Aristotle.

In metaphysics, the distinction between abstract and concrete refers to a divide between two types of entities. Many philosophers hold that this difference has fundamental metaphysical significance. Examples of concrete objects include plants, human beings and planets while things like numbers, sets and propositions are abstract objects. There is no general consensus as to what the characteristic marks of concreteness and abstractness are. Popular suggestions include defining the distinction in terms of the difference between (1) existence inside or outside space-time, (2) having causes and effects or not, (3) having contingent or necessary existence, (4) being particular or universal and (5) belonging to either the physical or the mental realm or to neither. Despite this diversity of views, there is broad agreement concerning most objects as to whether they are abstract or concrete. So under most interpretations, all these views would agree that, for example, plants are concrete objects while numbers are abstract objects.

Christianity and Hellenistic philosophies experienced complex interactions during the first to the fourth centuries.

Philosophical realism – usually not treated as a position of its own but as a stance towards other subject matters – is the view that a certain kind of thing has mind-independent existence, i.e. that it exists even in the absence of any mind perceiving it or that its existence is not just a mere appearance in the eye of the beholder. This includes a number of positions within epistemology and metaphysics which express that a given thing instead exists independently of knowledge, thought, or understanding. This can apply to items such as the physical world, the past and future, other minds, and the self, though may also apply less directly to things such as universals, mathematical truths, moral truths, and thought itself. However, realism may also include various positions which instead reject metaphysical treatments of reality entirely.

Paul Joseph Salomon Benacerraf is a French-born American philosopher working in the field of the philosophy of mathematics who taught at Princeton University his entire career, from 1960 until his retirement in 2007. He was appointed Stuart Professor of Philosophy in 1974, and retired as the James S. McDonnell Distinguished University Professor of Philosophy.

<span class="mw-page-title-main">Platonism</span> Philosophical system

Platonism is the philosophy of Plato and philosophical systems closely derived from it, though contemporary Platonists do not necessarily accept all doctrines of Plato. Platonism had a profound effect on Western thought. In its most basic fundamentals, Platonism affirms the existence of abstract objects, which are asserted to exist in a third realm distinct from both the sensible external world and from the internal world of consciousness, and is the opposite of nominalism. This can apply to properties, types, propositions, meanings, numbers, sets, truth values, and so on. Philosophers who affirm the existence of abstract objects are sometimes called Platonists; those who deny their existence are sometimes called nominalists. The terms "Platonism" and "nominalism" also have established senses in the history of philosophy. They denote positions that have little to do with the modern notion of an abstract object.

<span class="mw-page-title-main">Edward N. Zalta</span> American philosopher (born 1952)

Edward Nouri Zalta is an American philosopher who is a senior research scholar at the Center for the Study of Language and Information at Stanford University. He received his BA from Rice University in 1975 and his PhD from the University of Massachusetts Amherst in 1981, both in philosophy. Zalta has taught courses at Stanford University, Rice University, the University of Salzburg, and the University of Auckland. Zalta is also the Principal Editor of the Stanford Encyclopedia of Philosophy.

Stewart Shapiro is O'Donnell Professor of Philosophy at the Ohio State University and distinguished visiting professor at the University of Connecticut. He is a leading figure in the philosophy of mathematics where he defends the abstract variety of structuralism.

Metaphysics is the branch of philosophy that investigates principles of reality transcending those of any particular science. Cosmology and ontology are traditional branches of metaphysics. It is concerned with explaining the fundamental nature of being and the world. Someone who studies metaphysics can be called either a "metaphysician" or a "metaphysicist".

In the philosophy of science, structuralism asserts that all aspects of reality are best understood in terms of empirical scientific constructs of entities and their relations, rather than in terms of concrete entities in themselves.

Abstract object theory (AOT) is a branch of metaphysics regarding abstract objects. Originally devised by metaphysician Edward Zalta in 1981, the theory was an expansion of mathematical Platonism.

In the philosophy of mathematics, Benacerraf's identification problem is a philosophical argument developed by Paul Benacerraf against set-theoretic Platonism and published in 1965 in an article entitled "What Numbers Could Not Be". Historically, the work became a significant catalyst in motivating the development of mathematical structuralism.

Mathematicism is 'the effort to employ the formal structure and rigorous method of mathematics as a model for the conduct of philosophy'. or else it is the epistemological view that reality is fundamentally mathematical. The term has been applied to a number of philosophers, including Pythagoras and René Descartes although the term is not used by themselves.

<span class="mw-page-title-main">Quine–Putnam indispensability argument</span> Argument in the philosophy of mathematics

The Quine–Putnam indispensability argument is an argument in the philosophy of mathematics for the existence of abstract mathematical objects such as numbers and sets, a position known as mathematical platonism. It was named after the philosophers Willard Quine and Hilary Putnam, and is one of the most important arguments in the philosophy of mathematics.

In the philosophy of mathematics, Aristotelian realism holds that mathematics studies properties such as symmetry, continuity and order that can be immanently realized in the physical world. It contrasts with Platonism in holding that the objects of mathematics, such as numbers, do not exist in an "abstract" world but can be physically realized. It contrasts with nominalism, fictionalism, and logicism in holding that mathematics is not about mere names or methods of inference or calculation but about certain real aspects of the world.

References

  1. Brown, James (2008). Philosophy of Mathematics . Routledge. p.  62. ISBN   978-0-415-96047-2.
  2. 1 2 3 Benacerraf, Paul (1965). "What Numbers Could Not Be". Philosophical Review. 74 (1): 47–73. doi:10.2307/2183530. JSTOR   2183530.
  3. 1 2 Benacerraf, Paul (1983). "Mathematical Truth". In Putnam, H.W.; Benacerraf, P. (eds.). Philosophy of Mathematics: Selected Readings (2nd ed.). Cambridge University Press. pp. 403–420. ISBN   978-0-521-29648-9.
  4. 1 2 3 4 5 6 7 8 Shapiro, Stewart (May 1996). "Mathematical Structuralism". Philosophia Mathematica. 4 (2): 81–82. doi:10.1093/philmat/4.2.81.
  5. 1 2 3 Shapiro 1997 , p. 9
  6. Tennant, Neil (2017), "Logicism and Neologicism", in Zalta, Edward N. (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 ed.), Metaphysics Research Lab, Stanford University, retrieved 2022-07-10.
  7. Not to be confused with abstractionist Platonism.
  8. Zalta, Edward N.; Nodelman, Uri (February 2011). "A Logically Coherent Ante Rem Structuralism" (PDF). Ontological Dependence Workshop. University of Bristol.
  9. Linnebo, Øystein (2018). Thin Objects: An Abstractionist Account. Oxford University Press. ISBN   978-0-19-255896-1.
  10. da Silva, Jairo José (2017). Mathematics and Its Applications: A Transcendental-Idealist Perspective. Springer. p. 265. ISBN   978-3-319-63073-1.
  11. Franklin 2014 , pp. 48–59
  12. Franklin, James (2015). "Uninstantiated Properties and Semi-Platonist Aristotelianism". Review of Metaphysics. 69 (1): 25–45. JSTOR   24636591 . Retrieved 29 June 2021.
  13. Nefdt, Ryan M. (2018). "Inferentialism and Structuralism: A Tale of Two Theories". Logique et Analyse. 244: 489–512. doi:10.2143/LEA.244.0.3285352.

Bibliography