Surface states

Last updated

Surface states are electronic states found at the surface of materials. They are formed due to the sharp transition from solid material that ends with a surface and are found only at the atom layers closest to the surface. The termination of a material with a surface leads to a change of the electronic band structure from the bulk material to the vacuum. In the weakened potential at the surface, new electronic states can be formed, so called surface states. [1]

Contents

Origin at condensed matter interfaces

Figure 1. Simplified one-dimensional model of a periodic crystal potential terminating at an ideal surface. At the surface, the model potential jumps abruptly to the vacuum level (solid line). The dashed line represents a more realistic picture, where the potential reaches the vacuum level over some distance. FigPotential.PNG
Figure 1. Simplified one-dimensional model of a periodic crystal potential terminating at an ideal surface. At the surface, the model potential jumps abruptly to the vacuum level (solid line). The dashed line represents a more realistic picture, where the potential reaches the vacuum level over some distance.
Figure 2. Real part of the type of solution to the one-dimensional Schrodinger equation that corresponds to the bulk states. These states have Bloch character in the bulk, while decaying exponentially into the vacuum. Solution1.PNG
Figure 2. Real part of the type of solution to the one-dimensional Schrödinger equation that corresponds to the bulk states. These states have Bloch character in the bulk, while decaying exponentially into the vacuum.
Figure 3. Real part of the type of solution to the one-dimensional Schrodinger equation that corresponds to surface states. These states decay into both the vacuum and the bulk crystal and thus represent states localized at the crystal surface. Solution2.PNG
Figure 3. Real part of the type of solution to the one-dimensional Schrödinger equation that corresponds to surface states. These states decay into both the vacuum and the bulk crystal and thus represent states localized at the crystal surface.

As stated by Bloch's theorem, eigenstates of the single-electron Schrödinger equation with a perfectly periodic potential, a crystal, are Bloch waves [2]

Here is a function with the same periodicity as the crystal, n is the band index and k is the wave number. The allowed wave numbers for a given potential are found by applying the usual Born–von Karman cyclic boundary conditions. [2] The termination of a crystal, i.e. the formation of a surface, obviously causes deviation from perfect periodicity. Consequently, if the cyclic boundary conditions are abandoned in the direction normal to the surface the behavior of electrons will deviate from the behavior in the bulk and some modifications of the electronic structure has to be expected.

A simplified model of the crystal potential in one dimension can be sketched as shown in Figure 1. [3] In the crystal, the potential has the periodicity, a, of the lattice while close to the surface it has to somehow attain the value of the vacuum level. The step potential (solid line) shown in Figure 1 is an oversimplification which is mostly convenient for simple model calculations. At a real surface the potential is influenced by image charges and the formation of surface dipoles and it rather looks as indicated by the dashed line.

Given the potential in Figure 1, it can be shown that the one-dimensional single-electron Schrödinger equation gives two qualitatively different types of solutions. [4]

The first type of solution can be obtained for both metals and semiconductors. In semiconductors though, the associated eigenenergies have to belong to one of the allowed energy bands. The second type of solution exists in forbidden energy gap of semiconductors as well as in local gaps of the projected band structure of metals. It can be shown that the energies of these states all lie within the band gap. As a consequence, in the crystal these states are characterized by an imaginary wavenumber leading to an exponential decay into the bulk.

Shockley states and Tamm states

In the discussion of surface states, one generally distinguishes between Shockley states [5] and Tamm states, [6] named after the American physicist William Shockley and the Russian physicist Igor Tamm. There is no strict physical distinction between the two types of states, but the qualitative character and the mathematical approach used in describing them is different.

Topological surface states

All materials can be classified by a single number, a topological invariant; this is constructed out of the bulk electronic wave functions, which are integrated in over the Brillouin zone, in a similar way that the genus is calculated in geometric topology. In certain materials the topological invariant can be changed when certain bulk energy bands invert due to strong spin-orbital coupling. At the interface between an insulator with non-trivial topology, a so-called topological insulator, and one with a trivial topology, the interface must become metallic. More over, the surface state must have linear Dirac-like dispersion with a crossing point which is protected by time reversal symmetry. Such a state is predicted to be robust under disorder, and therefore cannot be easily localized. [7]

Shockley states

Surface states in metals

A simple model for the derivation of the basic properties of states at a metal surface is a semi-infinite periodic chain of identical atoms. [1] In this model, the termination of the chain represents the surface, where the potential attains the value V0 of the vacuum in the form of a step function, figure 1. Within the crystal the potential is assumed periodic with the periodicity a of the lattice. The Shockley states are then found as solutions to the one-dimensional single electron Schrödinger equation

with the periodic potential

where l is an integer, and P is the normalization factor. The solution must be obtained independently for the two domains z<0 and z>0, where at the domain boundary (z=0) the usual conditions on continuity of the wave function and its derivatives are applied. Since the potential is periodic deep inside the crystal, the electronic wave functions must be Bloch waves here. The solution in the crystal is then a linear combination of an incoming wave and a wave reflected from the surface. For z>0 the solution will be required to decrease exponentially into the vacuum

The wave function for a state at a metal surface is qualitatively shown in figure 2. It is an extended Bloch wave within the crystal with an exponentially decaying tail outside the surface. The consequence of the tail is a deficiency of negative charge density just inside the crystal and an increased negative charge density just outside the surface, leading to the formation of a dipole double layer. The dipole perturbs the potential at the surface leading, for example, to a change of the metal work function.

Surface states in semiconductors

Figure 4. Electronic band structure in the nearly free electron picture. Away from the Brillouin zone boundary the electron wave function has plane wave character and the dispersion relation is parabolic. At the Brillouin zone boundary the wave function is a standing wave composed of an incoming and a Bragg-reflected wave. This ultimately leads to the creation of a band gap. BandstructureNFE.PNG
Figure 4. Electronic band structure in the nearly free electron picture. Away from the Brillouin zone boundary the electron wave function has plane wave character and the dispersion relation is parabolic. At the Brillouin zone boundary the wave function is a standing wave composed of an incoming and a Bragg-reflected wave. This ultimately leads to the creation of a band gap.

The nearly free electron approximation can be used to derive the basic properties of surface states for narrow gap semiconductors. The semi-infinite linear chain model is also useful in this case. [4] However, now the potential along the atomic chain is assumed to vary as a cosine function

whereas at the surface the potential is modeled as a step function of height V0. The solutions to the Schrödinger equation must be obtained separately for the two domains z < 0 and z > 0. In the sense of the nearly free electron approximation, the solutions obtained for z < 0 will have plane wave character for wave vectors away from the Brillouin zone boundary , where the dispersion relation will be parabolic, as shown in figure 4. At the Brillouin zone boundaries, Bragg reflection occurs resulting in a standing wave consisting of a wave with wave vector and wave vector .

Here is a lattice vector of the reciprocal lattice (see figure 4). Since the solutions of interest are close to the Brillouin zone boundary, we set , where κ is a small quantity. The arbitrary constants A,B are found by substitution into the Schrödinger equation. This leads to the following eigenvalues

demonstrating the band splitting at the edges of the Brillouin zone, where the width of the forbidden gap is given by 2V. The electronic wave functions deep inside the crystal, attributed to the different bands are given by

Where C is a normalization constant. Near the surface at z = 0, the bulk solution has to be fitted to an exponentially decaying solution, which is compatible with the constant potential V0.

It can be shown that the matching conditions can be fulfilled for every possible energy eigenvalue which lies in the allowed band. As in the case for metals, this type of solution represents standing Bloch waves extending into the crystal which spill over into the vacuum at the surface. A qualitative plot of the wave function is shown in figure 2.

If imaginary values of κ are considered, i.e. κ = - i·q for z ≤ 0 and one defines

one obtains solutions with a decaying amplitude into the crystal

The energy eigenvalues are given by

E is real for large negative z, as required. Also in the range all energies of the surface states fall into the forbidden gap. The complete solution is again found by matching the bulk solution to the exponentially decaying vacuum solution. The result is a state localized at the surface decaying both into the crystal and the vacuum. A qualitative plot is shown in figure 3.

Surface states of a three-dimensional crystal

Figure 5. Atomic like orbitals of a Pt-atom. The orbitals shown are part of the double-zeta basis set used in density functional calculations. The orbitals are indexed according to the usual quantum numbers (n,l,m). Orbitals.PNG
Figure 5. Atomic like orbitals of a Pt-atom. The orbitals shown are part of the double-zeta basis set used in density functional calculations. The orbitals are indexed according to the usual quantum numbers (n,l,m).

The results for surface states of a monatomic linear chain can readily be generalized to the case of a three-dimensional crystal. Because of the two-dimensional periodicity of the surface lattice, Bloch's theorem must hold for translations parallel to the surface. As a result, the surface states can be written as the product of a Bloch waves with k-values parallel to the surface and a function representing a one-dimensional surface state

The energy of this state is increased by a term so that we have

where m* is the effective mass of the electron. The matching conditions at the crystal surface, i.e. at z=0, have to be satisfied for each separately and for each a single, but generally different energy level for the surface state is obtained.

True surface states and surface resonances

A surface state is described by the energy and its wave vector parallel to the surface, while a bulk state is characterized by both and wave numbers. In the two-dimensional Brillouin zone of the surface, for each value of therefore a rod of is extending into the three-dimensional Brillouin zone of the Bulk. Bulk energy bands that are being cut by these rods allow states that penetrate deep into the crystal. One therefore generally distinguishes between true surface states and surface resonances. True surface states are characterized by energy bands that are not degenerate with bulk energy bands. These states exist in the forbidden energy gap only and are therefore localized at the surface, similar to the picture given in figure 3. At energies where a surface and a bulk state are degenerate, the surface and the bulk state can mix, forming a surface resonance. Such a state can propagate deep into the bulk, similar to Bloch waves, while retaining an enhanced amplitude close to the surface.

Tamm states

Surface states that are calculated in the framework of a tight-binding model are often called Tamm states. In the tight binding approach, the electronic wave functions are usually expressed as a linear combination of atomic orbitals (LCAO), see figure 5. In this picture, it is easy to comprehend that the existence of a surface will give rise to surface states with energies different from the energies of the bulk states: Since the atoms residing in the topmost surface layer are missing their bonding partners on one side, their orbitals have less overlap with the orbitals of neighboring atoms. The splitting and shifting of energy levels of the atoms forming the crystal is therefore smaller at the surface than in the bulk.

If a particular orbital is responsible for the chemical bonding, e.g. the sp3 hybrid in Si or Ge, it is strongly affected by the presence of the surface, bonds are broken, and the remaining lobes of the orbital stick out from the surface. They are called dangling bonds. The energy levels of such states are expected to significantly shift from the bulk values.

In contrast to the nearly free electron model used to describe the Shockley states, the Tamm states are suitable to describe also transition metals and wide-bandgap semiconductors.

Extrinsic surface states

Surface states originating from clean and well ordered surfaces are usually called intrinsic . These states include states originating from reconstructed surfaces, where the two-dimensional translational symmetry gives rise to the band structure in the k space of the surface.

Extrinsic surface states are usually defined as states not originating from a clean and well ordered surface. Surfaces that fit into the category extrinsic are: [8]

  1. Surfaces with defects, where the translational symmetry of the surface is broken.
  2. Surfaces with adsorbates
  3. Interfaces between two materials, such as a semiconductor-oxide or semiconductor-metal interface
  4. Interfaces between solid and liquid phases.

Generally, extrinsic surface states cannot easily be characterized in terms of their chemical, physical or structural properties.

Experimental observation

Angle resolved photoemission spectroscopy

An experimental technique to measure the dispersion of surface states is angle resolved photoemission spectroscopy (ARPES) or angle resolved ultraviolet photoelectron spectroscopy (ARUPS).

Scanning tunneling microscopy

The surface state dispersion can be measured using a scanning tunneling microscope; in these experiments, periodic modulations in the surface state density, which arise from scattering off of surface impurities or step edges, are measured by an STM tip at a given bias voltage. The wavevector versus bias (energy) of the surface state electrons can be fit to a free-electron model with effective mass and surface state onset energy. [9]

A recent new theory

A naturally simple but fundamental question is how many surface states are in a band gap in a one-dimensional crystal of length ( is the potential period, and is a positive integer)? A well-accepted concept proposed by Fowler [10] first in 1933, then written in Seitz's classic book [11] that "in a finite one-dimensional crystal the surface states occur in pairs, one state being associated with each end of the crystal." Such a concept seemly was never doubted since then for nearly a century, as shown, for example, in. [12] However, a recent new investigation [13] [14] [15] gives an entirely different answer.

The investigation tries to understand electronic states in ideal crystals of finite size based on the mathematical theory of periodic differential equations. [16] This theory provides some fundamental new understandings of those electronic states, including surface states.

The theory found that a one-dimensional finite crystal with two ends at and always has one and only one state whose energy and properties depend on but not for each band gap. This state is either a band-edge state or a surface state in the band gap(see, Particle in a one-dimensional lattice, Particle in a box). Numerical calculations have confirmed such findings. [14] [15] Further, these behaviors have been seen in different one-dimensional systems, such as in. [17] [18] [19] [20] [21] [22] [23]

Therefore:

Further investigations extended to multi-dimensional cases found that

Related Research Articles

<span class="mw-page-title-main">Particle in a box</span> Physical model in quantum mechanics which is analytically solvable

In quantum mechanics, the particle in a box model describes a particle free to move in a small space surrounded by impenetrable barriers. The model is mainly used as a hypothetical example to illustrate the differences between classical and quantum systems. In classical systems, for example, a particle trapped inside a large box can move at any speed within the box and it is no more likely to be found at one position than another. However, when the well becomes very narrow, quantum effects become important. The particle may only occupy certain positive energy levels. Likewise, it can never have zero energy, meaning that the particle can never "sit still". Additionally, it is more likely to be found at certain positions than at others, depending on its energy level. The particle may never be detected at certain positions, known as spatial nodes.

<span class="mw-page-title-main">Quantum harmonic oscillator</span> Important, well-understood quantum mechanical model

The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution is known.

In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechanical quantization of the modes of vibrations for elastic structures of interacting particles. Phonons can be thought of as quantized sound waves, similar to photons as quantized light waves. However, photons are fundamental particles that can be individually detected, whereas phonons, being quasiparticles, are an emergent phenomenon.

In solid state physics, a particle's effective mass is the mass that it seems to have when responding to forces, or the mass that it seems to have when interacting with other identical particles in a thermal distribution. One of the results from the band theory of solids is that the movement of particles in a periodic potential, over long distances larger than the lattice spacing, can be very different from their motion in a vacuum. The effective mass is a quantity that is used to simplify band structures by modeling the behavior of a free particle with that mass. For some purposes and some materials, the effective mass can be considered to be a simple constant of a material. In general, however, the value of effective mass depends on the purpose for which it is used, and can vary depending on a number of factors.

<span class="mw-page-title-main">Fermi gas</span> Physical model of gases composed of many non-interacting identical fermions

A Fermi gas is an idealized model, an ensemble of many non-interacting fermions. Fermions are particles that obey Fermi–Dirac statistics, like electrons, protons, and neutrons, and, in general, particles with half-integer spin. These statistics determine the energy distribution of fermions in a Fermi gas in thermal equilibrium, and is characterized by their number density, temperature, and the set of available energy states. The model is named after the Italian physicist Enrico Fermi.

<span class="mw-page-title-main">Bloch's theorem</span> Fundamental theorem in condensed matter physics

In condensed matter physics, Bloch's theorem states that solutions to the Schrödinger equation in a periodic potential can be expressed as plane waves modulated by periodic functions. The theorem is named after the physicist Felix Bloch, who discovered the theorem in 1929. Mathematically, they are written

<span class="mw-page-title-main">Wave packet</span> Short "burst" or "envelope" of restricted wave action that travels as a unit

In physics, a wave packet is a short burst of localized wave action that travels as a unit, outlined by an envelope. A wave packet can be analyzed into, or can be synthesized from, a potentially-infinite set of component sinusoidal waves of different wavenumbers, with phases and amplitudes such that they interfere constructively only over a small region of space, and destructively elsewhere. Any signal of a limited width in time or space requires many frequency components around a center frequency within a bandwidth inversely proportional to that width; even a gaussian function is considered a wave packet because its Fourier transform is a "packet" of waves of frequencies clustered around a central frequency. Each component wave function, and hence the wave packet, are solutions of a wave equation. Depending on the wave equation, the wave packet's profile may remain constant or it may change (dispersion) while propagating.

In quantum mechanics, the particle in a one-dimensional lattice is a problem that occurs in the model of a periodic crystal lattice. The potential is caused by ions in the periodic structure of the crystal creating an electromagnetic field so electrons are subject to a regular potential inside the lattice. It is a generalization of the free electron model, which assumes zero potential inside the lattice.

In quantum mechanics, the case of a particle in a one-dimensional ring is similar to the particle in a box. The Schrödinger equation for a free particle which is restricted to a ring is

<span class="mw-page-title-main">Density of states</span> Number of available physical states per energy unit

In solid-state physics and condensed matter physics, the density of states (DOS) of a system describes the number of modes per unit frequency range. The density of states is defined as , where is the number of states in the system of volume whose energies lie in the range from to . It is mathematically represented as a distribution by a probability density function, and it is generally an average over the space and time domains of the various states occupied by the system. The density of states is directly related to the dispersion relations of the properties of the system. High DOS at a specific energy level means that many states are available for occupation.

<span class="mw-page-title-main">Quantum well</span> Concept in quantum mechanics

A quantum well is a potential well with only discrete energy values.

In quantum physics, Fermi's golden rule is a formula that describes the transition rate from one energy eigenstate of a quantum system to a group of energy eigenstates in a continuum, as a result of a weak perturbation. This transition rate is effectively independent of time and is proportional to the strength of the coupling between the initial and final states of the system as well as the density of states. It is also applicable when the final state is discrete, i.e. it is not part of a continuum, if there is some decoherence in the process, like relaxation or collision of the atoms, or like noise in the perturbation, in which case the density of states is replaced by the reciprocal of the decoherence bandwidth.

A superlattice is a periodic structure of layers of two materials. Typically, the thickness of one layer is several nanometers. It can also refer to a lower-dimensional structure such as an array of quantum dots or quantum wells.

A Van Hove singularity is a singularity in the density of states (DOS) of a crystalline solid. The wavevectors at which Van Hove singularities occur are often referred to as critical points of the Brillouin zone. For three-dimensional crystals, they take the form of kinks. The most common application of the Van Hove singularity concept comes in the analysis of optical absorption spectra. The occurrence of such singularities was first analyzed by the Belgian physicist Léon Van Hove in 1953 for the case of phonon densities of states.

The Franz–Keldysh effect is a change in optical absorption by a semiconductor when an electric field is applied. The effect is named after the German physicist Walter Franz and Russian physicist Leonid Keldysh.

<span class="mw-page-title-main">Low-energy electron diffraction</span> Technique for determining surface structures

Low-energy electron diffraction (LEED) is a technique for the determination of the surface structure of single-crystalline materials by bombardment with a collimated beam of low-energy electrons (30–200 eV) and observation of diffracted electrons as spots on a fluorescent screen.

Surface-extended X-ray absorption fine structure (SEXAFS) is the surface-sensitive equivalent of the EXAFS technique. This technique involves the illumination of the sample by high-intensity X-ray beams from a synchrotron and monitoring their photoabsorption by detecting in the intensity of Auger electrons as a function of the incident photon energy. Surface sensitivity is achieved by the interpretation of data depending on the intensity of the Auger electrons instead of looking at the relative absorption of the X-rays as in the parent method, EXAFS.

Defect types include atom vacancies, adatoms, steps, and kinks that occur most frequently at surfaces due to the finite material size causing crystal discontinuity. What all types of defects have in common, whether surface or bulk defects, is that they produce dangling bonds that have specific electron energy levels different from those of the bulk. This difference occurs because these states cannot be described with periodic Bloch waves due to the change in electron potential energy caused by the missing ion cores just outside the surface. Hence, these are localized states that require separate solutions to the Schrödinger equation so that electron energies can be properly described. The break in periodicity results in a decrease in conductivity due to defect scattering.

The multislice algorithm is a method for the simulation of the elastic scattering of an electron beam with matter, including all multiple scattering effects. The method is reviewed in the book by John M. Cowley, and also the work by Ishizuka. The algorithm is used in the simulation of high resolution transmission electron microscopy (HREM) micrographs, and serves as a useful tool for analyzing experimental images. This article describes some relevant background information, the theoretical basis of the technique, approximations used, and several software packages that implement this technique. Some of the advantages and limitations of the technique and important considerations that need to be taken into account are described.

The empty lattice approximation is a theoretical electronic band structure model in which the potential is periodic and weak. One may also consider an empty irregular lattice, in which the potential is not even periodic. The empty lattice approximation describes a number of properties of energy dispersion relations of non-interacting free electrons that move through a crystal lattice. The energy of the electrons in the "empty lattice" is the same as the energy of free electrons. The model is useful because it clearly illustrates a number of the sometimes very complex features of energy dispersion relations in solids which are fundamental to all electronic band structures.

References

  1. 1 2 Sidney G. Davison; Maria Steslicka (1992). Basic Theory of Surface States. Clarendon Press. ISBN   0-19-851990-7.
  2. 1 2 C. Kittel (1996). Introduction to Solid State Physics . Wiley. pp. 80–150. ISBN   0-471-14286-7.
  3. 1 2 K. Oura; V.G. Lifshifts; A.A. Saranin; A. V. Zotov; M. Katayama (2003). "11". Surface Science. Springer-Verlag, Berlin Heidelberg New York.
  4. 1 2 Feng Duan; Jin Guojin (2005). "7". Condensed Matter Physics:Volume 1. World Scientific. ISBN   981-256-070-X.
  5. W. Shockley (1939). "On the Surface States Associated with a Periodic Potential". Phys. Rev. 56 (4): 317–323. Bibcode:1939PhRv...56..317S. doi:10.1103/PhysRev.56.317.
  6. I. Tamm (1932). "On the possible bound states of electrons on a crystal surface". Phys. Z. Sowjetunion. 1: 733.
  7. Hasan, M. Z.; Kane, C. L. (2010). "Colloquium: Topological insulators". Rev. Mod. Phys. 82 (4): 3045–3067. arXiv: 1002.3895 . Bibcode:2010RvMP...82.3045H. doi:10.1103/revmodphys.82.3045. ISSN   0034-6861. S2CID   16066223.
  8. Frederick Seitz; Henry Ehrenreich; David Turnbull (1996). Solid State Physics. Academic Press. pp. 80–150. ISBN   0-12-607729-0.
  9. Oka, H.; et al. (2014). "Spin-polarized quantum confinement in nanostructures: Scanning tunneling microscopy". Rev. Mod. Phys. 86 (4): 1127. Bibcode:2014RvMP...86.1127O. doi:10.1103/RevModPhys.86.1127 . Retrieved 3 September 2021.
  10. Fowler, R.H. (1933). "Notes on some electronic properties of conductors and insulators". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 141 (843): 56–71. Bibcode:1933RSPSA.141...56F. doi: 10.1098/rspa.1933.0103 . S2CID   122900909.
  11. Seitz, F. (1940). The Modern Theory of Solids. New York, McGraw-Hill. p. 323.
  12. Davison, S. D.; Stęślicka, M. (1992). Basic Theory of Surface States. Oxford, Clarendon Press. doi:10.1007/978-3-642-31232-8_3.
  13. Ren, Shang Yuan (2002). "Two Types of Electronic States in One-dimensional Crystals of Finite length". Annals of Physics. 301 (1): 22–30. arXiv: cond-mat/0204211 . Bibcode:2002AnPhy.301...22R. doi:10.1006/aphy.2002.6298. S2CID   14490431.
  14. 1 2 Ren, Shang Yuan (2006). Electronic States in Crystals of Finite Size: Quantum Confinement of Bloch Waves. New York, Springer. Bibcode:2006escf.book.....R.
  15. 1 2 Ren, Shang Yuan (2017). Electronic States in Crystals of Finite Size: Quantum Confinement of Bloch Waves (2 ed.). Singapore, Springer.
  16. Eastham, M.S.P. (1973). The Spectral Theory of Periodic Differential Equations. Edinburgh, Scottish Academic Press.
  17. Hladky-Henniona, Anne-Christine; Allan, Guy (2005). "Localized modes in a one-dimensional diatomic chain of coupled spheres" (PDF). Journal of Applied Physics. 98 (5): 054909 (1-7). Bibcode:2005JAP....98e4909H. doi:10.1063/1.2034082.
  18. Ren, Shang Yuan; Chang, Yia-Chung (2007). "Theory of confinement effects in finite one-dimensional phononic crystals". Physical Review B. 75 (21): 212301(1-4). Bibcode:2007PhRvB..75u2301R. doi:10.1103/PhysRevB.75.212301.
  19. El Boudouti, E. H. (2007). "Two types of modes in finite size one-dimensional coaxial photonic crystals: General rules and experimental evidence" (PDF). Physical Review E. 76 (2): 026607(1-9). Bibcode:2007PhRvE..76b6607E. doi:10.1103/PhysRevE.76.026607. PMID   17930167.
  20. El Boudouti, E. H.; El Hassouani, Y.; Djafari-Rouhani, B.; Aynaou, H. (2007). "Surface and confined acoustic waves in finite size 1D solid-fluid phononic crystals". Journal of Physics: Conference Series. 92 (1): 1–4. Bibcode:2007JPhCS..92a2113E. doi: 10.1088/1742-6596/92/1/012113 . S2CID   250673169.
  21. El Hassouani, Y.; El Boudouti, E. H.; Djafari-Rouhani, B.; Rais, R (2008). "Sagittal acoustic waves in finite solid-fluid superlattices: Band-gap structure, surface and confined modes, and omnidirectional reflection and selective transmission" (PDF). Physical Review B. 78 (1): 174306(1–23). Bibcode:2008PhRvB..78q4306E. doi:10.1103/PhysRevB.78.174306.
  22. El Boudouti, E. H.; Djafari-Rouhani, B.; Akjouj, A.; Dobrzynski, L. (2009). "Acoustic waves in solid and fluid layered materials". Surface Science Reports. 64 (1): 471–594. Bibcode:2009SurSR..64..471E. doi:10.1016/j.surfrep.2009.07.005.
  23. El Hassouani, Y.; El Boudouti, E.H.; Djafari-Rouhani, B. (2013). "One-Dimensional Phononic Crystals". In Deymier, P.A. (ed.). Acoustic Metamaterials and Phononic Crystals, Springer Series in Solid-State Sciences 173. Vol. 173. Berlin, Springer-Verlag. pp. 45–93. doi:10.1007/978-3-642-31232-8_3. ISBN   978-3-642-31231-1.