Swarmalators

Last updated


Swarmalators [1] are generalizations of phase oscillators [2] that swarm around in space as they synchronize in time. They were introduced to model the diverse real-world systems which both sync and swarm, such as vinegar eels, [3] magnetic domain walls, [4] and Japanese tree frogs. [5] More formally, they are dynamical units with spatial degrees of freedom and internal degrees of freedom whose dynamics are coupled.

Contents

Real world examples

Swarmalation [6] occurs in diverse parts of Nature and technology some of which are discussed below. The Figure to the right plots some examples in a (discipline, number of particles) plot.

Examples of real world swarmalators plotted in a (discipline, number of particles) plane Swarmalator-examples.png
Examples of real world swarmalators plotted in a (discipline, number of particles) plane

Biological microswimmers. Sperm, vinegar eels and potentially other swimmers such as C elegans swarm through space via the rhythmic beating of their tails. This beating may synchronize with the beating of a neighboring swimmer via hydrodynamic coupling, which in turn causes spatial attraction; sync links to self-assembly. This can lead to vortex arrays, [7] trains [8] metachronal waves [9] and other collective effects.

Magnetic domain walls [10] are key features in the field of magnetism and materials science, defined by the boundary between different magnetic domains in ferromagnetic materials. These domains are regions within a material where the magnetic moments of atoms are aligned in the same direction, creating a uniform magnetic field. The hold great promise as memory devices in next generation spintronics. In a simplified model, [11] a domain wall can be described by its center of mass and the in-plane angle of its magnetic dipole vector, thereby classifying them as swarmalators. Experiments reveal that the interaction between two such domain walls leads to rich spatiotemporal behaviors some of which is captured by the 1D swarmalator model listed above. [12]

Japanese Tree frogs. During courtship rituals, male Japanese Tree frogs attract the attention of females by croaking rhythmically. Neighboring males tend to alternate the croaking (croak degree out of phase) so as to avoid "speaking over each other". Evidence [13] suggests this (anti)-synchronization influences thee inter-frog spatial dynamics, making them swarmalators.

Janus particles [14] are spherical particles with one hemisphere coated in a magnetic substance, the other remaining non-magnetic. They are named after the Roman God Janus who has two faces. This anisotropy gives the particles unusual magnetic properties. When subject to external magnetic fields, their magnetic dipoles vectors begins to oscillate which induces and couples to movements (thus qualifying as a swarmalators). The resultant "sync-selected self-assembly" [15] gives rise novel superstructure with potential use in biomedicine contexts such as targeted drug delivery, bio imaging, and bio-sensing. [16]

Quincke rollers[ citation needed ] are a class of active particle that exhibits self-propelled motion in a fluid due to an electrohydrodynamic phenomenon known as the Quincke effect. [17] This effect occurs when a dielectric (non-conducting) particle is subject to an electric field. The rotation of the particle, combined with frictional interactions with the surrounding fluid and surface, leads to a rolling motion. Thus, the particle has a phase and a position which couple, as required of swarmalator. Collections of Quincke rollers produce rich emergent behavior such as activity waves [18] and shock waves. [19]

Embryonic cells are the foundational building blocks of an embryo, undergoing division and differentiation to form the complex structures of an organism. These cells exhibit remarkable plasticity, allowing them to transform into a wide range of specialized cell types. In the context of swarmalators, embryonic cells display a unique blend of synchronization and swarming behaviors. [20] They coordinate their movements and genetic expression patterns in response to various cues, a process essential for proper tissue formation and organ development. This linking of sync and self-assembly make embryonic cells a compelling example of a real-world swarmalators.

Robot swarms. Land based rovers as well as aerial drones programmed with swarmalator models have been created [21] and has recreated the five collective states of the swarmalator model (see Mathematical Models section for the plot of these states). The linking of sync and swarming defines a new kind of bio-inspired algorithm which several potential applications. [22]

2D swarmalator model

A mathematical model for swarmalators moving in 2D has been proposed. This 2D swarmalator model in generic form is

The spatial dynamics combine pairwise interaction with pairwise , which produces swarming / aggregation. The novelty is the attraction is modified by a phase term ; thus the aggregation becomes phase-dependent. Likewise, the phase dynamics contain a sync term modified by a spatial term so the synchronization becomes position dependent. In short, the swarmalators model the interaction between self-synchronization and self-assembly in space.

While in general the position could be in 2D or 3D, the instance of the swarmalator model originally introduced is a 2D model and the choices for etc. were

There are two parameters and are parameters: controls the strength of phase-space attraction/repulsion, while describes the phase coupling strength. The above can be considered a blending of the aggregation model introduced from biological swarming [23] (the spatial part) and the Kuramoto model of phase oscillators (the phase part).

Phenomena

Figure 1: A depiction of the five collective states of the swarmalator model. Swarmalator model collective states.png
Figure 1: A depiction of the five collective states of the swarmalator model.

The model above produces 5 collective states depicted in the Figure 1 below.

To demarcate where each state arises and disappears as a parameters are changed, the rainbow order parameters,

Figure 2: The rainbow order parameters and
g
{\displaystyle \gamma }
can discern the various collective states. See main text for definitions of these quantities. Order parameters swarmalator model.png
Figure 2: The rainbow order parameters and can discern the various collective states. See main text for definitions of these quantities.

where are used. Figure 2 plots versus for fixed . As can be seen, in the rainbow-like static phased wave state (at = 0), and then declines as decreases. A second order parameter , defined as the fraction of swarmalators that have completed at least one cycle in space and phase after transients in also plotted, which can distinguish between the active phase wave and splintered phase wave states.

Puzzles

There are several unresolved puzzles and open questions related to swarmalators:

1D swarmalator model

A simpler swarmalator model where the spatial motion is confined to a 1D ring has also been proposed [24] [25]

where are the (random) natural frequencies of the i-th swarmalator and are drawn from certain distributions . This 1D model corresponds to the angular component of the 2D swarmalator model. The restriction to this simpler topology allows for a greater analysis. For instance, the model with natural frequencies can be solved by defining the sum/difference coordinates the model simplifies into a pair of linearly coupled Kuramoto models

where , and the rainbow order parameters are the equivalent of the 2D model

Collective states of 1D swarmalator model, where swarmalators are depicted as dots in the
(
x
,
th
)
{\displaystyle (x,\theta )}
plane. 1d swarmalator states.png
Collective states of 1D swarmalator model, where swarmalators are depicted as dots in the plane.
Top row, sync order parameter
R
{\displaystyle R}
versus phase coupling strength
K
{\displaystyle K}
for the Kuramoto model with Cauchy natural frequencies with zero center and unit width. Bottom row, rainbow order parameters
S
+-
{\displaystyle S_{\pm }}
for the 1D swarmalator model also with unit Cauchy natural frequencies and
J
=
9
{\displaystyle J=9}
. The black dotted lines mark the transitions between the async state, phase wave, and mixed state in that order. Data were collecting using an RK4 solver with timestep
d
t
=
0.1
{\displaystyle dt=0.1}
for
T
=
200
{\displaystyle T=200}
time units with
N
=
10
6
{\displaystyle N=10^{6}}
swarmalators. Order-pars-for-wiki.png
Top row, sync order parameter versus phase coupling strength for the Kuramoto model with Cauchy natural frequencies with zero center and unit width. Bottom row, rainbow order parameters for the 1D swarmalator model also with unit Cauchy natural frequencies and . The black dotted lines mark the transitions between the async state, phase wave, and mixed state in that order. Data were collecting using an RK4 solver with timestep for time units with swarmalators.

For unimodal distribution of such as the Cauchy distribution, the model exhibits four collective states depicted in the figure on the right.

Note in each state, the swarmalators split into a locked/drifting sub-populations, just like the Kuramoto model. The locked population are the denser regions in the Figure, the drifters the light grey regions.

The figure to the right compares the bifurcations of the Kuramoto model to those of the 1D swarmalator model. For the Kuramoto model (top row), the sync order parameter bifurcates from the async state () and then increases monontonically in the sync state (). For the 1D swarmalator model, the bifurcations are richer. Starting with the phase coupling and increasing, bifurcate from the async state () to the phase wave () then to the mixed state () before finally ending up in the sync state (). Note we have taken without loss of generality and are constants that depend on . Expressions for have been worked out, those for in the mixed state are unknown (see ref [25]).

Related Research Articles

In physics, the cross section is a measure of the probability that a specific process will take place when some kind of radiant excitation intersects a localized phenomenon. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.

<span class="mw-page-title-main">Diffraction</span> Phenomenon of the motion of waves

Diffraction is the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a secondary source of the propagating wave. Italian scientist Francesco Maria Grimaldi coined the word diffraction and was the first to record accurate observations of the phenomenon in 1660.

<span class="mw-page-title-main">Kinetic theory of gases</span> Historic physical model of gases

The kinetic theory of gases is a simple, historically significant classical model of the thermodynamic behavior of gases, with which many principal concepts of thermodynamics were established. The model describes a gas as a large number of identical submicroscopic particles, all of which are in constant, rapid, random motion. Their size is assumed to be much smaller than the average distance between the particles. The particles undergo random elastic collisions between themselves and with the enclosing walls of the container. The basic version of the model describes the ideal gas, and considers no other interactions between the particles.

Ray transfer matrix analysis is a mathematical form for performing ray tracing calculations in sufficiently simple problems which can be solved considering only paraxial rays. Each optical element is described by a 2×2 ray transfer matrix which operates on a vector describing an incoming light ray to calculate the outgoing ray. Multiplication of the successive matrices thus yields a concise ray transfer matrix describing the entire optical system. The same mathematics is also used in accelerator physics to track particles through the magnet installations of a particle accelerator, see electron optics.

<span class="mw-page-title-main">Dipole antenna</span> Antenna consisting of two rod shaped conductors

In radio and telecommunications a dipole antenna or doublet is the simplest and most widely used class of antenna. The dipole is any one of a class of antennas producing a radiation pattern approximating that of an elementary electric dipole with a radiating structure supporting a line current so energized that the current has only one node at each end. A dipole antenna commonly consists of two identical conductive elements such as metal wires or rods. The driving current from the transmitter is applied, or for receiving antennas the output signal to the receiver is taken, between the two halves of the antenna. Each side of the feedline to the transmitter or receiver is connected to one of the conductors. This contrasts with a monopole antenna, which consists of a single rod or conductor with one side of the feedline connected to it, and the other side connected to some type of ground. A common example of a dipole is the "rabbit ears" television antenna found on broadcast television sets.

<span class="mw-page-title-main">Halbach array</span> Special arrangement of permanent magnets

A Halbach array is a special arrangement of permanent magnets that augments the magnetic field on one side of the array while cancelling the field to near zero on the other side. This is achieved by having a spatially rotating pattern of magnetisation.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

The Kerr–Newman metric is the most general asymptotically flat, stationary solution of the Einstein–Maxwell equations in general relativity that describes the spacetime geometry in the region surrounding an electrically charged, rotating mass. It generalizes the Kerr metric by taking into account the field energy of an electromagnetic field, in addition to describing rotation. It is one of a large number of various different electrovacuum solutions, that is, of solutions to the Einstein–Maxwell equations which account for the field energy of an electromagnetic field. Such solutions do not include any electric charges other than that associated with the gravitational field, and are thus termed vacuum solutions.

The Kuramoto model, first proposed by Yoshiki Kuramoto, is a mathematical model used in describing synchronization. More specifically, it is a model for the behavior of a large set of coupled oscillators. Its formulation was motivated by the behavior of systems of chemical and biological oscillators, and it has found widespread applications in areas such as neuroscience and oscillating flame dynamics. Kuramoto was quite surprised when the behavior of some physical systems, namely coupled arrays of Josephson junctions, followed his model.

<span class="mw-page-title-main">Hopf bifurcation</span> Critical point where a periodic solution arises

In the mathematical theory of bifurcations, a Hopfbifurcation is a critical point where, as a parameter changes, a system's stability switches and a periodic solution arises. More accurately, it is a local bifurcation in which a fixed point of a dynamical system loses stability, as a pair of complex conjugate eigenvalues—of the linearization around the fixed point—crosses the complex plane imaginary axis as a parameter crosses a threshold value. Under reasonably generic assumptions about the dynamical system, the fixed point becomes a small-amplitude limit cycle as the parameter changes.

In quantum mechanics, the angular momentum operator is one of several related operators analogous to classical angular momentum. The angular momentum operator plays a central role in the theory of atomic and molecular physics and other quantum problems involving rotational symmetry. Such an operator is applied to a mathematical representation of the physical state of a system and yields an angular momentum value if the state has a definite value for it. In both classical and quantum mechanical systems, angular momentum is one of the three fundamental properties of motion.

<span class="mw-page-title-main">Directivity</span> Measure of how much of an antennas signal is transmitted in one direction

In electromagnetics, directivity is a parameter of an antenna or optical system which measures the degree to which the radiation emitted is concentrated in a single direction. It is the ratio of the radiation intensity in a given direction from the antenna to the radiation intensity averaged over all directions. Therefore, the directivity of a hypothetical isotropic radiator is 1, or 0 dBi.

The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.

<span class="mw-page-title-main">Diffraction from slits</span>

Diffraction processes affecting waves are amenable to quantitative description and analysis. Such treatments are applied to a wave passing through one or more slits whose width is specified as a proportion of the wavelength. Numerical approximations may be used, including the Fresnel and Fraunhofer approximations.

In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.

Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. Spin should not be conceptualized as involving the "rotation" of a particle's "internal mass", as ordinary use of the word may suggest: spin is a quantized property of waves.

A synchronization network is a network of coupled dynamical systems. It consists of a network connecting oscillators, where oscillators are nodes that emit a signal with somewhat regular frequency, and are also capable of receiving a signal.

In physics, and especially scattering theory, the momentum-transfer cross section is an effective scattering cross section useful for describing the average momentum transferred from a particle when it collides with a target. Essentially, it contains all the information about a scattering process necessary for calculating average momentum transfers but ignores other details about the scattering angle.

In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator.

The Peierls substitution method, named after the original work by Rudolf Peierls is a widely employed approximation for describing tightly-bound electrons in the presence of a slowly varying magnetic vector potential.

References

  1. O'Keeffe, Kevin P., Hyunsuk Hong, and Steven H. Strogatz. "Oscillators that sync and swarm." Nature communications 8.1 (2017): 1504.
  2. Strogatz, Steven H. "From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators." Physica D: Nonlinear Phenomena 143.1-4 (2000): 1-20.
  3. Peshkov, Anton, Sonia McGaffigan, and Alice C. Quillen. "Synchronized oscillations in swarms of nematode Turbatrix aceti." Soft Matter 18.6 (2022): 1174-1182.
  4. Hrabec, Aleš, et al. "Velocity enhancement by synchronization of magnetic domain walls." Physical review letters 120.22 (2018): 227204.
  5. Aihara, Ikkyu, et al. "Spatio-temporal dynamics in collective frog choruses examined by mathematical modeling and field observations." Scientific reports 4.1 (2014): 3891.
  6. Verberck, Bart (2022). "Wavy worms". Nature Physics. 18 (2): 131–131. doi:10.1038/s41567-022-01516-1.
  7. Riedel, Ingmar H.; Kruse, Karsten; Howard, Jonathon (2005). "A self-organized vortex array of hydrodynamically entrained sperm cells". Science. 309 (5732): 300–303. doi:10.1126/science.1110329.
  8. Schoeller, Simon F.; Holt, William V.; Keaveny, Eric E. (2020). "Collective dynamics of sperm cells". Philosophical Transactions of the Royal Society B. 375 (1807): 20190384. doi: 10.1098/rstb.2019.0384 . PMC   7423380 .
  9. Quillen, A. C. (2021). "Metachronal waves in concentrations of swimming Turbatrix aceti nematodes and an oscillator chain model for their coordinated motions". Physical Review E. 104 (1): 014412. arXiv: 2101.06809 . doi:10.1103/PhysRevE.104.014412.
  10. Hrabec, Aleš (2018). "Velocity enhancement by synchronization of magnetic domain walls". Physical Review Letters. 120 (22): 227204. arXiv: 1804.01385 . doi:10.1103/PhysRevLett.120.227204.
  11. Slonczewski, J. C. (1972). "Dynamics of magnetic domain walls". AIP Conference Proceedings. Vol. 5. American Institute of Physics.
  12. Sar, Gourab Kumar; Ghosh, Dibakar; O'Keeffe, Kevin (2023). "Solvable model of driven matter with pinning". arXiv: 2306.09589 .
  13. Aihara, Ikkyu (2014). "Spatio-temporal dynamics in collective frog choruses examined by mathematical modeling and field observations". Scientific Reports. 4 (1): 3891. doi: 10.1038/srep03891 . PMC   5384602 .
  14. Zhang, Jie; Grzybowski, Bartosz A.; Granick, Steve (2017). "Janus particle synthesis, assembly, and application". Langmuir. 33 (28): 6964–6977. doi:10.1021/acs.langmuir.7b01088.
  15. Yan, Jing (2012). "Linking synchronization to self-assembly using magnetic Janus colloids". Nature. 491 (7425): 578–581. doi:10.1038/nature11619.
  16. "Viscosity decrease induced by a DC electric field in a suspension". ScienceDirect. Here, the viscosity decrease is obtained by making use of Quincke rotation: the spontaneous rotation of insulating particles suspended in a weakly conducting liquid when the system is submitted to a DC electric field. In such a case, particles rotate around any axis perpendicular to the applied field. ... T.B. Jones Quincke rotation of spheres ...
  17. Jones, Thomas B. (1984). "Quincke rotation of spheres". IEEE Transactions on Industry Applications. 4: 845–849.
  18. Liu, Zeng Tao (2021). "Activity waves and freestanding vortices in populations of subcritical Quincke rollers". Proceedings of the National Academy of Sciences. 118 (40): e2104724118. doi:10.1073/pnas.2104724118. PMC   8501844 .
  19. Zhang, Bo (2023). "Spontaneous shock waves in pulse-stimulated flocks of Quincke rollers". Nature Communications. 14 (1): 7050. doi:10.1038/s41467-023-7050-0.
  20. Tsiairis, Charisios D.; Aulehla, Alexander (2016). "Self-organization of embryonic genetic oscillators into spatiotemporal wave patterns". Cell. 164 (4): 656–667. doi: 10.1016/j.cell.2015.12.053 . PMC   4752873 .
  21. Barciś, Agata; Bettstetter, Christian (2020). "Sandsbots: Robots that sync and swarm". IEEE Access. 8: 218752–218764.
  22. O'Keeffe, Kevin; Bettstetter, Christian (2019). "A review of swarmalators and their potential in bio-inspired computing". Micro-and Nanotechnology Sensors, Systems, and Applications XI. 10982: 383–394.
  23. Bernoff, Andrew J., and Chad M. Topaz. "Nonlocal aggregation models: A primer of swarm equilibria." siam REVIEW 55.4 (2013): 709-747.
  24. O'Keeffe, Kevin, Steven Ceron, and Kirstin Petersen. "Collective behavior of swarmalators on a ring." Physical Review E 105.1 (2022): 014211.
  25. Yoon, S., et al. "Sync and Swarm: Solvable Model of Nonidentical Swarmalators." Physical Review Letters 129.20 (2022): 208002.