TOP2B

Last updated
TOP2B
4j3ncartoon.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases TOP2B , TOPIIB, top2beta, topoisomerase (DNA) II beta, DNA topoisomerase II beta, BILU
External IDs OMIM: 126431 MGI: 98791 HomoloGene: 134711 GeneCards: TOP2B
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001068
NM_001330700

NM_009409

RefSeq (protein)

NP_001059
NP_001317629

NP_033435

Location (UCSC) Chr 3: 25.6 – 25.66 Mb Chr 14: 6.03 – 6.1 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

DNA topoisomerase 2-beta is an enzyme that in humans is encoded by the TOP2B gene. [5] [6]

Contents

Function

This gene encodes a DNA topoisomerase, an enzyme that controls and alters the topologic states of DNA during transcription. This nuclear enzyme is involved in processes such as chromosome condensation, chromatid separation, and the relief of torsional stress that occurs during DNA transcription and replication. It catalyzes the transient breaking and rejoining of two strands of duplex DNA which allows the strands to pass through one another, thus altering the topology of DNA. Two forms of this enzyme exist as likely products of a gene duplication event. The gene encoding this form, beta, is localized to chromosome 3 and the alpha form is localized to chromosome 17. The gene encoding this enzyme functions as the target for several anticancer agents, for example mitoxantrone, and a variety of mutations in this gene have been associated with the development of drug resistance. Reduced activity of this enzyme may also play a role in ataxia-telangiectasia. Alternative splicing of this gene results in two transcript variants; however, the second variant has not yet been fully described. [7]

Neuronal activity

During a new learning experience, a set of genes is rapidly expressed in the brain. This induced gene expression is considered to be essential for processing the information being learned. Such genes are referred to as immediate early genes (IEGs). TOP2B activity is essential for the expression of IEGs in a type of learning experience in mice termed associative fear memory. [8] Such a learning experience appears to rapidly trigger TOP2B to induce double-strand breaks in the promoter DNA of IEG genes that function in neuroplasticity. Repair of these induced breaks is associated with DNA demethylation of IEG gene promoters allowing immediate expression of these IEG genes. [8]

Activation of more than 600 regulatory sequences in promoters and 800 regulatory sequences in enhancers, in many cell types, appears to depend on short-term double-strand breaks initiated by TOP2B. [9] [10] The induction of particular double-strand breaks are specific with respect to their inducing signal. When neurons are activated in vitro, just 22 of TOP2B-induced double-strand breaks occur in their genomes, largely at immediate early genes. [11]

Regulatory sequence in a promoter at a transcription start site with a paused RNA polymerase and a TOP2B-induced double-strand break.jpg

The induction of short-term double-strand breaks by TOP2B occurs in association with at least four enzymes of the non-homologous end joining (NHEJ) DNA repair pathway (DNA-PKcs, KU70, KU80 and DNA LIGASE IV) (see Figure). These enzymes repair the double-strand breaks within about 15 minutes to two hours. [11] [12] The double-strand breaks in the promoter are thus associated with TOP2B and at least these four repair enzymes. These proteins are present simultaneously on a single promoter nucleosome (there are about 147 nucleotides in the DNA sequence wrapped around a single nucleosome) located near the transcription start site of their target gene. [12]

The double-strand break introduced by TOP2B apparently frees a part of the promoter at an RNA polymerase-bound transcription start site to physically move to its associated enhancer (see regulatory sequence). This allows the enhancer, with its bound transcription factors and mediator proteins, to directly interact with the RNA polymerase paused at the transcription start site to start transcription. [11] [13]

Brain regions involved in memory formation including medial prefrontal cortex (mPFC) Brain regions in memory formation updated.jpg
Brain regions involved in memory formation including medial prefrontal cortex (mPFC)

Contextual fear conditioning in the mouse causes the mouse to have a long-term memory and fear of the location in which it occurred. This conditioning causes hundreds of gene-associated DSBs in the medial prefrontal cortex (mPFC) and hippocampus that are important for learning and memory. [14]

Other TOP2B and DNA interactions

Interactions of TOP2B and DNA also regulate transcription of genes that are important for development. These include genes encoding axon guidance factors and cell adhesion molecules. Specifically, TOP2B is required for lamina-specific targeting of retinal ganglion cell axons and dendrites in the zebrafish. [15]

Interactions

TOP2B has been shown to interact with:

In other species

In Drosophila Hadlaczky et al 1988 found DNA topoisomerase II β did not correlate with cell proliferation - while α did. [22]

Related Research Articles

<span class="mw-page-title-main">Transcription (biology)</span> Process of copying a segment of DNA into RNA

Transcription is the process of copying a segment of DNA into RNA. The segments of DNA transcribed into RNA molecules that can encode proteins are said to produce messenger RNA (mRNA). Other segments of DNA are copied into RNA molecules called non-coding RNAs (ncRNAs). mRNA comprises only 1–3% of total RNA samples. Less than 2% of the human genome can be transcribed into mRNA, while at least 80% of mammalian genomic DNA can be actively transcribed, with the majority of this 80% considered to be ncRNA.

DNA topoisomerases are enzymes that catalyze changes in the topological state of DNA, interconverting relaxed and supercoiled forms, linked (catenated) and unlinked species, and knotted and unknotted DNA. Topological issues in DNA arise due to the intertwined nature of its double-helical structure, which, for example, can lead to overwinding of the DNA duplex during DNA replication and transcription. If left unchanged, this torsion would eventually stop the DNA or RNA polymerases involved in these processes from continuing along the DNA helix. A second topological challenge results from the linking or tangling of DNA during replication. Left unresolved, links between replicated DNA will impede cell division. The DNA topoisomerases prevent and correct these types of topological problems. They do this by binding to DNA and cutting the sugar-phosphate backbone of either one or both of the DNA strands. This transient break allows the DNA to be untangled or unwound, and, at the end of these processes, the DNA backbone is resealed. Since the overall chemical composition and connectivity of the DNA do not change, the DNA substrate and product are chemical isomers, differing only in their topology.

A regulatory sequence is a segment of a nucleic acid molecule which is capable of increasing or decreasing the expression of specific genes within an organism. Regulation of gene expression is an essential feature of all living organisms and viruses.

<span class="mw-page-title-main">RNA polymerase II</span> Protein complex that transcribes DNA

RNA polymerase II is a multiprotein complex that transcribes DNA into precursors of messenger RNA (mRNA) and most small nuclear RNA (snRNA) and microRNA. It is one of the three RNAP enzymes found in the nucleus of eukaryotic cells. A 550 kDa complex of 12 subunits, RNAP II is the most studied type of RNA polymerase. A wide range of transcription factors are required for it to bind to upstream gene promoters and begin transcription.

<span class="mw-page-title-main">Type I topoisomerase</span>

In molecular biology Type I topoisomerases are enzymes that cut one of the two strands of double-stranded DNA, relax the strand, and reanneal the strand. They are further subdivided into two structurally and mechanistically distinct topoisomerases: type IA and type IB.

<span class="mw-page-title-main">Type II topoisomerase</span>

Type II topoisomerases are topoisomerases that cut both strands of the DNA helix simultaneously in order to manage DNA tangles and supercoils. They use the hydrolysis of ATP, unlike Type I topoisomerase. In this process, these enzymes change the linking number of circular DNA by ±2. Topoisomerases are ubiquitous enzymes, found in all living organisms.

<span class="mw-page-title-main">TOP2A</span> Protein-coding gene in the species Homo sapiens

DNA topoisomerase IIα is a human enzyme encoded by the TOP2A gene.

<span class="mw-page-title-main">TOP1</span> DNA topoisomerase enzyme

DNA topoisomerase 1 is an enzyme that in humans is encoded by the TOP1 gene. It is a DNA topoisomerase, an enzyme that catalyzes the transient breaking and rejoining of a single strand of DNA.

<span class="mw-page-title-main">CAMK4</span> Protein-coding gene in the species Homo sapiens

Calcium/calmodulin-dependent protein kinase type IV is an enzyme that in humans is encoded by the CAMK4 gene.

<span class="mw-page-title-main">ST6GAL1</span>

Beta-galactoside alpha-2,6-sialyltransferase 1 is an enzyme that in humans is encoded by the ST6GAL1 gene.

<span class="mw-page-title-main">Flap structure-specific endonuclease 1</span> Protein-coding gene in the species Homo sapiens

Flap endonuclease 1 is an enzyme that in humans is encoded by the FEN1 gene.

<span class="mw-page-title-main">CAMK1</span> Protein-coding gene in the species Homo sapiens

Calcium/calmodulin-dependent protein kinase type 1 is an enzyme that in humans is encoded by the CAMK1 gene.

<span class="mw-page-title-main">SUB1</span> Protein-coding gene in the species Homo sapiens

Activated RNA polymerase II transcriptional coactivator p15 also known as positive cofactor 4 (PC4) or SUB1 homolog is a protein that in humans is encoded by the SUB1 gene. The human SUB1 gene is named after an orthologous gene in yeast.

<span class="mw-page-title-main">TDP1</span> Protein-coding gene in the species Homo sapiens

Tyrosyl-DNA phosphodiesterase 1 is an enzyme that in humans is encoded by the TDP1 gene.

<span class="mw-page-title-main">DUT (gene)</span> Protein-coding gene in the species Homo sapiens

DUTP pyrophosphatase, also known as DUT, is an enzyme which in humans is encoded by the DUT gene on chromosome 15.

<span class="mw-page-title-main">TOP3A</span> Protein-coding gene in the species Homo sapiens

DNA topoisomerase 3-alpha is an enzyme that in humans is encoded by the TOP3A gene.

<span class="mw-page-title-main">MGAT3</span> Protein-coding gene in the species Homo sapiens

Beta-1,4-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase is an enzyme that in humans is encoded by the MGAT3 gene.

<span class="mw-page-title-main">TOP3B</span> Protein-coding gene in the species Homo sapiens

DNA topoisomerase 3-beta-1 is an enzyme that in humans is encoded by the TOP3B gene.

<span class="mw-page-title-main">GTF2E2</span> Protein-coding gene in the species Homo sapiens

General transcription factor IIE subunit 2 (GTF2E2), also known as transcription initiation factor IIE subunit beta (TFIIE-beta), is a protein that in humans is encoded by the GTF2E2 gene.

While the cellular and molecular mechanisms of learning and memory have long been a central focus of neuroscience, it is only in recent years that attention has turned to the epigenetic mechanisms behind the dynamic changes in gene transcription responsible for memory formation and maintenance. Epigenetic gene regulation often involves the physical marking of DNA or associated proteins to cause or allow long-lasting changes in gene activity. Epigenetic mechanisms such as DNA methylation and histone modifications have been shown to play an important role in learning and memory.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000077097 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000017485 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Tan KB, Dorman TE, Falls KM, Chung TD, Mirabelli CK, Crooke ST, Mao J (January 1992). "Topoisomerase II alpha and topoisomerase II beta genes: characterization and mapping to human chromosomes 17 and 3, respectively". Cancer Research. 52 (1): 231–234. PMID   1309226.
  6. Jenkins JR, Ayton P, Jones T, Davies SL, Simmons DL, Harris AL, et al. (November 1992). "Isolation of cDNA clones encoding the beta isozyme of human DNA topoisomerase II and localisation of the gene to chromosome 3p24". Nucleic Acids Research. 20 (21): 5587–5592. doi:10.1093/nar/20.21.5587. PMC   334390 . PMID   1333583.
  7. "Entrez Gene: TOP2B topoisomerase (DNA) II beta 180kDa".
  8. 1 2 Li X, Marshall PR, Leighton LJ, Zajaczkowski EL, Wang Z, Madugalle SU, et al. (February 2019). "The DNA Repair-Associated Protein Gadd45γ Regulates the Temporal Coding of Immediate Early Gene Expression within the Prelimbic Prefrontal Cortex and Is Required for the Consolidation of Associative Fear Memory". The Journal of Neuroscience. 39 (6): 970–983. doi:10.1523/JNEUROSCI.2024-18.2018. PMC   6363930 . PMID   30545945. (Erratum:  PMID   30545945)
  9. Dellino GI, Palluzzi F, Chiariello AM, Piccioni R, Bianco S, Furia L, et al. (June 2019). "Release of paused RNA polymerase II at specific loci favors DNA double-strand-break formation and promotes cancer translocations". Nature Genetics. 51 (6): 1011–1023. doi:10.1038/s41588-019-0421-z. PMID   31110352. S2CID   159041612.
  10. Singh S, Szlachta K, Manukyan A, Raimer HM, Dinda M, Bekiranov S, Wang YH (March 2020). "Pausing sites of RNA polymerase II on actively transcribed genes are enriched in DNA double-stranded breaks". The Journal of Biological Chemistry. 295 (12): 3990–4000. doi: 10.1074/jbc.RA119.011665 . PMC   7086017 . PMID   32029477.
  11. 1 2 3 Madabhushi R, Gao F, Pfenning AR, Pan L, Yamakawa S, Seo J, et al. (June 2015). "Activity-Induced DNA Breaks Govern the Expression of Neuronal Early-Response Genes". Cell. 161 (7): 1592–1605. doi:10.1016/j.cell.2015.05.032. PMC   4886855 . PMID   26052046.
  12. 1 2 Ju BG, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW, Glass CK, Rosenfeld MG (June 2006). "A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription". Science. 312 (5781): 1798–1802. Bibcode:2006Sci...312.1798J. doi:10.1126/science.1127196. PMID   16794079. S2CID   206508330.
  13. Allen BL, Taatjes DJ (March 2015). "The Mediator complex: a central integrator of transcription". Nature Reviews. Molecular Cell Biology. 16 (3): 155–166. doi:10.1038/nrm3951. PMC   4963239 . PMID   25693131.
  14. Stott RT, Kritsky O, Tsai LH (2021). "Profiling DNA break sites and transcriptional changes in response to contextual fear learning". PLOS ONE. 16 (7): e0249691. Bibcode:2021PLoSO..1649691S. doi: 10.1371/journal.pone.0249691 . PMC   8248687 . PMID   34197463.
  15. Nevin LM, Xiao T, Staub W, Baier H (June 2011). "Topoisomerase IIbeta is required for lamina-specific targeting of retinal ganglion cell axons and dendrites". Development. 138 (12): 2457–2465. doi:10.1242/dev.060335. PMC   3100707 . PMID   21610027.
  16. Kitagawa H, Fujiki R, Yoshimura K, Mezaki Y, Uematsu Y, Matsui D, et al. (June 2003). "The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome". Cell. 113 (7): 905–917. doi: 10.1016/s0092-8674(03)00436-7 . PMID   12837248.
  17. 1 2 Tsai SC, Valkov N, Yang WM, Gump J, Sullivan D, Seto E (November 2000). "Histone deacetylase interacts directly with DNA topoisomerase II". Nature Genetics. 26 (3): 349–353. doi:10.1038/81671. PMID   11062478. S2CID   19301396.
  18. Johnson CA, Padget K, Austin CA, Turner BM (February 2001). "Deacetylase activity associates with topoisomerase II and is necessary for etoposide-induced apoptosis". The Journal of Biological Chemistry. 276 (7): 4539–4542. doi: 10.1074/jbc.C000824200 . PMID   11136718.
  19. Cowell IG, Okorokov AL, Cutts SA, Padget K, Bell M, Milner J, Austin CA (February 2000). "Human topoisomerase IIalpha and IIbeta interact with the C-terminal region of p53". Experimental Cell Research. 255 (1): 86–94. doi:10.1006/excr.1999.4772. PMID   10666337.
  20. Mao Y, Desai SD, Liu LF (August 2000). "SUMO-1 conjugation to human DNA topoisomerase II isozymes". The Journal of Biological Chemistry. 275 (34): 26066–26073. doi: 10.1074/jbc.M001831200 . PMID   10862613.
  21. Nakano H, Yamazaki T, Miyatake S, Nozaki N, Kikuchi A, Saito T (March 1996). "Specific interaction of topoisomerase II beta and the CD3 epsilon chain of the T cell receptor complex". The Journal of Biological Chemistry. 271 (11): 6483–6489. doi: 10.1074/jbc.271.11.6483 . PMID   8626450.
  22. Wang JC (1996). "DNA topoisomerases". Annual Review of Biochemistry. Annual Reviews. 65 (1): 635–692. doi:10.1146/annurev.bi.65.070196.003223. PMID   8811192.

Further reading