Tactical Airborne Reconnaissance Pod System

Last updated

F-14 with a TARPS pod mounted F-14 TARPS.jpg
F-14 with a TARPS pod mounted
Logo tarps.png

The Tactical Airborne Reconnaissance Pod System (TARPS) was a large and sophisticated camera pod carried by the Grumman F-14 Tomcat. [N 1] It contains three camera bays with different type cameras which are pointed down at passing terrain. It was originally designed to provide an interim aerial reconnaissance capability until a dedicated F/A-18 Hornet reconnaissance version could be fielded. TARPS was pressed into service upon arrival in the fleet in 1981, and remained in use up to the end of Tomcat service in 2006.

Contents

TARPS pod and Tomcat interoperability

TARPS drawing. TARPS drawing.jpg
TARPS drawing.
At 17 feet (5.2 m) and weighing 1,850 lb (840 kg), the TARPS is the largest device hung on a Tomcat. Crew moves TARPS pod on USS George Washington.jpg
At 17 feet (5.2 m) and weighing 1,850 lb (840 kg), the TARPS is the largest device hung on a Tomcat.

The pod itself is 17 feet (5.2 m) long, and weighs 1,850 lb (840 kg). and is carried on the starboard side of the tunnel between the engine nacelles. The F-14A and F-14B Tomcats had to be specially modified to carry the TARPS pod which involved routing of control wiring from the rear cockpit and environmental control system (ECS) connections to the pod. Standard allowance was at least three TARPS aircraft per designated squadron (only one per airwing). All F-14Ds were modified to be TARPS capable, which allowed greater flexibility in scheduling aircraft and conducting maintenance. A control panel is fitted to the rear cockpit and the RIO has total control over pod operation except for a pilot controlled button that can activate cameras as selected by the RIO (but seldom used).

Camera bays

TARPS intelligence specialist uses a light table to analyze film from KS-87 camera. A crewman looks at TARPS imagery aboard USS George Washington.jpg
TARPS intelligence specialist uses a light table to analyze film from KS-87 camera.
TARPS personnel attending to forward camera bay Crew inspecting TARPS digital camera.jpg
TARPS personnel attending to forward camera bay

Each of the camera bays was designed to carry different cameras for specific tasks on reconnaissance missions. The forward bay held a 150 mm (6") focal length serial frame camera (KS-87) on a two position rotating mount which could direct the camera's view straight down or be moved to a 45° angle for a forward oblique view. The second bay or middle bay of the TARPS pod originally held the 230 mm (9") focal length KA-99 panoramic camera which rotated from horizon to horizon and could be used for side oblique photography. Each image in the wide field of view position produced a 91 cm (36") negative. The KA-99 could carry up to 2,000 feet (610 m) of film that could be exhausted if not managed carefully by the RIO. The third camera bay held an infrared line scanner camera used for night missions or daylight mission traces. All TARPS cameras were monitored by a device called a CIPDU in the tail cone section of the pod that provided camera status to maintenance personnel and during flight provided aircraft position data onto the camera imagery for intel analysis. An electrical umbilical cord connected the pod to the control panel that was positioned on the left side of the rear cockpit. A hose from the ECS from the F-14 cooled/heated the internals of the pod in flight and kept the appropriate humidity levels constant. In 1987 VF-111 was the first squadron to deploy with a KS-153 camera system in bay two. The KS-153 used a 610 mm (24") lens and was used for stand-off photography in the Persian Gulf. During Operation Desert Shield the KS-153 was used to monitor the no fly zones in Iraq.

TARPS pod mounted on a skid with TARPS personnel TARPS pod on skid.jpg
TARPS pod mounted on a skid with TARPS personnel

Tomcat TARPS squadrons were staffed with Navy photographer's mates and Avionics Technicians that maintained the cameras and worked with the carrier to process the imagery. TARPS squadrons also included an extra Intelligence officer and Intelligence Specialists to help plan TARPS missions and exploit the imagery afterwards. The TARPS shop maintained the cameras and removed or loaded the pod when and if needed. Wet film processing was conducted in a processing room connected to the ship's Intelligence Center (CVIC) where the Intelligence Specialists has a dedicated space with a light table for analyzing the hundreds of feet of film and exploiting the data.

TARPS missions

The TARPS pod provided capability for the Tomcat to conduct a variety of reconnaissance tasking including:

Upgrades

VF-102 F-14 Tomcat seen carrying a combat TARPS loadout including ECA and ALQ-167 F-14 from VF-102 with TARPS.jpg
VF-102 F-14 Tomcat seen carrying a combat TARPS loadout including ECA and ALQ-167

Although TARPS was originally planned to be an interim solution, combat experience with VF-32 over Lebanon in 1983 resulted in upgrades to the TARPS camera suite and to the aircraft survivability. Since the KA-99 camera was designed for low-medium altitude missions, the Tomcats were forced to fly as low as 10,000 feet (3,000 m) over active AAA and SAM sites in the Bekaa Valley, again by VF-32, resulting in 6th Fleet requesting higher altitude cameras such as had been available in the dedicated reconnaissance platforms such as the RA-5C, RF-8 and RF-4. As a result, the first set of four KA-93 910 mm (36") focal length Long Range Optic (LOROP) cameras were shipped to NAS Oceana in the spring of 1984 for deployment with the next Tomcat TARPS squadron. VF-102 conducted an OPEVAL of the cameras en route to the MED in expectation of flying them over Lebanon, but the crisis had cooled down by then. The cameras then became forward deployed assets and cross-decked between TARPS squadrons. Later, KS-153 LOROP cameras were also procured and also used as forward deployed assets. The KS-87 camera bay was eventually upgraded with a digital sensor so that imagery could be captured onto a PCMCIA Type II card for debrief, but could also be transmitted as desired by the RIO.

The TARPS mission first exposed the Tomcat to the AAA and SAM threat on a routine basis and spurred upgrades not only to the cameras, but to the aircraft itself. The existing RHAW gear, the ALR-45/50 was vintage Vietnam era and could not keep up with the latest threats of the SA-5 and SA-6, both present in several threat countries in the Mediterranean. As such, TARPS Tomcats were provided with an Expanded Chaff Adapter (ECA) rail that provided 120 extra expendable rounds and another rail that mounted an ALQ-167 "Bullwinkle" jammer. Eventually, the F-14B arrived with the improved ALR-67 RHAW gear capable of keeping pace with the latest threats. Prior to that, some Tomcat squadrons used modified "Fuzz-buster" automotive police radar detectors mounted ad hoc on the pilot's glare shield to detect threats not handled by the ALR-45/50. [2]

Operational history

Classic TARPS image of a Soviet Kynda-class cruiser during the height of the Cold War Kynda class cruiser underway.jpg
Classic TARPS image of a Soviet Kynda-class cruiser during the height of the Cold War

TARPS was immediately impressed into the Cold War and used for surveillance of Soviet ships at sea and in their anchorages sometimes from over 1,000 miles (1,600 km) distant from patrolling aircraft carriers in the classic cat and mouse tactics of that era.

VF-102 TARPS mission to keep an eye on Soviet Balzam intelligence gathering ship attempting to shadow NATO maneuvers in 1985. VF-102 F-14 overflies Balzam class.jpg
VF-102 TARPS mission to keep an eye on Soviet Balzam intelligence gathering ship attempting to shadow NATO maneuvers in 1985.

TARPS resulted in Tomcats being put in harm's way shortly after it was introduced to the fleet in 1981. VF-102 Tomcats had been inadvertently been fired on by AAA and a single SA-2 SAM over Somalia in April 1983 while conducting peacetime mapping prior to a major exercise. A few months later VF-32 conducted TARPS missions in support of the invasion of Grenada and went on to join VF-143 and VF-31 in flying missions in the Eastern Med where three carriers had gathered to respond to the crisis in Lebanon. Thus, TARPS was responsible for the Tomcat's first sustained combat baptism of fire when the crisis in Lebanon heated up in 1983 requiring daily overflights over hostile AAA and SAMs. During operation El Dorado Canyon in 1986, Libya launched SCUD missiles at a US outpost on an island in the Mediterranean and VF-102 flew TARPS to ascertain if there had been any damage.

TARPS image of results after F-117 precision bunker busting during Operation Desert Storm TARPS Desert Storm BDA.jpg
TARPS image of results after F-117 precision bunker busting during Operation Desert Storm

Initially, TARPS was not a priority on the air tasking order during Desert Shield/Storm due to availability of strategic assets like the U-2/TR-1 and plentiful USAF RF-4 units. However, once Desert Storm started, the demand for realtime intel overwhelmed the other assets and TARPS missions were called upon to meet the demand. Immediately, it became obvious that Tomcats were favored for in country missions over the RF-4 as they required no escort and needed less fuel pre- and post-mission, which was a real concern at the time. TARPS continued to be utilized post Desert Storm and training was modified to take into account medium altitude tactics such as were flown in Desert Storm. Prior to that, the majority of TARPS missions training missions were low altitude overland and over water navigation and imagery. Only mapping was flown at medium altitudes. TARPS was used routinely in Operation Southern Watch over Iraq and called upon in Bosnia in 1995 and then again over Kosovo in 1999. The advent of LANTIRN into Tomcat operations provided a useful complement to TARPS. Since both systems need the same real estate in the rear cockpit for sensor operation control panels, they cannot be mounted on the aircraft at the same time, but they can be flown in formation yielding the best of both systems.

TARPS was used in the United States in 1993 when areas of the Mississippi River flooded. The Federal Emergency Management Agency (FEMA) requested TARPS flights be taken over the area to determine which locations were hardest hit. TARPS has also been used for hurricane damage assessment. TARPS was also used to assess damages following the Waco siege in 1993, as well as damage to the Alfred P. Murrah Federal Building following the Oklahoma City bombing. In addition, TARPS equipped F-14s were used for DEA intel missions for anti-drug operations in the early 1990s. [ citation needed ]

Notes

  1. The pod was originally developed for use by the A-7 Corsair [1]

Related Research Articles

<span class="mw-page-title-main">Grumman F-14 Tomcat</span> Carrier-based air superiority fighter aircraft family

The Grumman F-14 Tomcat is an American carrier-capable supersonic, twin-engine, two-seat, twin-tail, all-weather-capable variable-sweep wing fighter aircraft. The Tomcat was developed for the United States Navy's Naval Fighter Experimental (VFX) program after the collapse of the General Dynamics-Grumman F-111B project. A large and well-equipped fighter, the F-14 was the first of the American Teen Series fighters, which were designed incorporating air combat experience against MiG fighters during the Vietnam War.

<span class="mw-page-title-main">McDonnell F-101 Voodoo</span> Family of 1950s jet fighter aircraft

The McDonnell F-101 Voodoo is a supersonic jet fighter designed and produced by the American McDonnell Aircraft Corporation.

<span class="mw-page-title-main">LANTIRN</span> US Air Force navigation and targeting system

LANTIRN is a combined navigation and targeting pod system for use on the United States Air Force fighter aircraft—the F-15E Strike Eagle and F-16 Fighting Falcon manufactured by Martin Marietta. LANTIRN significantly increases the combat effectiveness of these aircraft, allowing them to fly at low altitudes, at night and under-the-weather to attack ground targets with a variety of precision-guided weapons.

<span class="mw-page-title-main">VFA-213</span> Military unit

Strike Fighter Squadron 213 (VFA-213) Blacklions is an aviation unit of the United States Navy based at Naval Air Station Oceana, Virginia. It was established in 1955 and is currently equipped with the F/A-18F Super Hornet. The squadron is assigned to Carrier Air Wing Eight and uses the radio callsign Lion.

<span class="mw-page-title-main">VFA-102</span> Military unit

Strike Fighter Squadron 102 (VFA-102) is a United States Navy Strike Fighter squadron based at Marine Corps Air Station Iwakuni. Their call sign is Diamond, with the tail code NF, and they fly the F/A-18F Super Hornet.

<span class="mw-page-title-main">VFA-32</span> Military unit

Strike Fighter Squadron 32 (VFA-32), nicknamed the "Fighting Swordsmen" are a United States Navy strike fighter squadron presently flying the F/A-18F Super Hornet and based ashore at Naval Air Station Oceana. Their radio callsign is Gypsy and their tail code is AC. The Fighting Swordsmen of VFA-32 are the 2023 recipients of the Mutha Fighter Spirit Award, awarded annually at the Navy’s Strike Fighter Ball in Norfolk, VA.

<span class="mw-page-title-main">RAPTOR</span>

RAPTOR was a reconnaissance pod used by the Royal Air Force on its fleet of Tornado GR.4A and GR.4 aircraft. RAPTOR was manufactured by the Goodrich Corporation, initially part of UTC Aerospace Systems, but now part of Collins Aerospace.

<span class="mw-page-title-main">VF-84 (1955–1995)</span> Military unit

VF-84, Fighter Squadron 84 was an aviation unit of the United States Navy. Originally established as VA-86 on 1 July 1955, it was immediately redesignated as VF-84 and was disestablished on 1 October 1995. It was the third US Navy squadron to be designated as VF-84. The squadron was nicknamed the Jolly Rogers and was based at NAS Oceana. It took the number but not the lineage of VF-84 the "Wolf Gang" and the insignia of VF-61 the Jolly Rogers.

<span class="mw-page-title-main">VFA-103</span> Military unit

Strike Fighter Squadron 103 (VFA-103), nicknamed the Jolly Rogers, is an aviation unit of the United States Navy established in 1952. VFA-103 flies the F/A-18F Super Hornet and is based at Naval Air Station Oceana, Virginia (US). The squadron's radio callsign is Victory and it is assigned to Carrier Air Wing Seven.

<span class="mw-page-title-main">363rd Intelligence, Surveillance, and Reconnaissance Group</span> Military unit

The 363rd Intelligence, Surveillance, and Reconnaissance Group is a United States Air Force unit stationed at Joint Base Langley-Eustis. It is assigned to the 363rd Intelligence, Surveillance and Reconnaissance Wing. It was activated in February 2015, after having been returned to regular service after operating as a provisional unit. The group has its origins in the 363rd Fighter Group, activated on 1 August 1943 at Hamilton Field, California. The unit was credited with 41 victories but lost 43 of its own aircraft during World War II.

<span class="mw-page-title-main">VFA-2</span> Military unit

Strike Fighter Squadron 2 (VFA-2) also known as the "Bounty Hunters" is a United States Navy F/A-18F Super Hornet strike fighter squadron based at Naval Air Station Lemoore, California. Their tail code is NE and their callsign is "Bullet". They are attached to Carrier Air Wing 2 (CVW-2), a composite unit made up of a wide array of aircraft performing a variety of combat and support missions that deploy aboard the Carl Vinson.

<span class="mw-page-title-main">VF-124</span> Military unit

Fighter Squadron 124 or VF-124Gunfighters was a fleet replacement squadron (FRS) of the United States Navy. Originally established on 16 August 1948 as VF-53, it was redesignated VF-124 at NAS Moffett Field on 11 April 1958 due to a need for an increased number of flight training squadrons, itself necessary because of introduction of swept wing fighters into Navy service. In 1961, the squadron relocated to NAS Miramar, California, which would become the U.S. Pacific Fleet's Master Jet Base for fighter aircraft.

<span class="mw-page-title-main">VFA-143</span> Military unit

Strike Fighter Squadron 143 (VFA-143), also known as the "Pukin Dogs," is a United States Navy strike fighter squadron based at Naval Air Station Oceana, Virginia. The Pukin Dogs are an operational fleet squadron and flying the F/A-18E Super Hornet. They are currently attached to Carrier Air Wing One and USS Harry S Truman. They are currently at their homeport of NAS Oceana. Their radio callsign is Taproom.

<span class="mw-page-title-main">VFA-154</span> Military unit

Strike Fighter Squadron 154 (VFA-154), also known as the "Black Knights", is a United States Navy strike fighter squadron stationed at Naval Air Station Lemoore. The Black Knights are an operational fleet squadron flying the F/A-18F Super Hornet. They are currently attached to Carrier Air Wing Eleven and deployed aboard the aircraft carrier USS Theodore Roosevelt. Their tailcode is NH and their callsign is "Knight".

The Grumman F-14 Tomcat has served with the United States Navy and the Imperial Iranian Air Force, then the Islamic Republic of Iran Air Force after 1979. It operated aboard U.S. aircraft carriers from 1974 to 2006 and remains in service with Iran. In-depth knowledge of its service with Iran is relatively limited.

<span class="mw-page-title-main">Aerial reconnaissance</span> Military exploration and observation by means of aircraft or other airborne platforms

Aerial reconnaissance is reconnaissance for a military or strategic purpose that is conducted using reconnaissance aircraft. The role of reconnaissance can fulfil a variety of requirements including artillery spotting, the collection of imagery intelligence, and the observation of enemy maneuvers.

<span class="mw-page-title-main">6021st Reconnaissance Squadron</span> Military unit

The 6021st Reconnaissance Squadron is an inactive United States Air Force unit. Its last was assigned to the 67th Tactical Reconnaissance Wing, stationed at Yokota Air Base, Japan. It was discontinued on 8 December 1957.

<span class="mw-page-title-main">RVAH-7</span> Military unit

RVAH-7 was a reconnaissance attack (heavy) squadron of the U.S. Navy. Originally established as Composite Squadron Seven (VC-7) on 10 August 1950, it was redesignated as Heavy Attack Squadron Seven (VAH-7) on 1 November 1955 and was redesignated again as Reconnaissance Attack (Heavy) Squadron Seven (RVAH-7) on 1 December 1964. The squadron was disestablished on 28 September 1979.

References

  1. Spick, Mick (1988). Modern Fighting Aircraft Volume 8 - F-14. New York: Arco Publishing Ltd. p. 45. ISBN   0-668-06406-4.
  2. "Navy using 'fuzz-buster' radar warning devices". UPI. 29 April 1987. Retrieved 21 September 2020.